Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (2)
  • Opus Repository ZIB
  • 14-Electron intermediates  (1)
  • 27Al-NMR spectra  (1)
  • 1
    ISSN: 0009-2940
    Keywords: Bis(tetramethylipiperidino)aluminum halides ; Alkoxy((tetramethylpiperidino)aluminum halides ; 27Al-NMR spectra ; Aluminum ; Amides ; Synthetic methods ; Bridging ligands ; Chemistry ; Inorganic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: N-Lithio-2,2,6,6-tetramethylpiperidine [Li(tmp)] reacts with AlX3 (X = Cl, Br) in diethyl ether/ n-hexane solution to generate the products of substitution and ether cleavage, [tmpAl(X)(μ-OEt)], (la, X = Cl; 1b, X = Br). However, when the reaction is allowed to proceed in n-hexane alone, an almost quantitative yield of compounds tmp2AlX (2a, X = Cl; 2b, X = Br; 2c, X = I) is obtained. According to 27AI-NMR spectroscopy, mass spectroscopy, cryoscopy, and X-ray crystal structure determinations, these compounds are monomeric in the solid state, in solution, and in the gas phase. 2b reacts with AgBF4 yielding the fluoride-bridged dimer (tmp2AlF), 2d, as shown by X-ray crystal structure determination.
    Additional Material: 3 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0009-2940
    Keywords: Rhodium(I) phosphane complexes ; 14-Electron intermediates ; MO theory, applied ; Chemistry ; Inorganic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Bis(di-tert-butylphosphanyl)methane Complexes of Rhodium: Geometry, Electronic Structure, and Derivatives of the 14-Electron Fragment [Rh(dtbpm)Cl]. Molecular Structure of Rh(dtbpm)Cl(PMe3)14-Electron fragments [M(PR3)2X] (M = Rh, Ir, X = halogen etc.) are considered to be an important class of highly reactive, coordinatively unsaturated intermediates in many metal-induced stoichiometric or catalytic transformations of organic substrates. As available theoretical data suggest a slightly preferred T-shaped groundstate geometry with a less symmetric cis rather than the usually implied trans phosphane arrangement for such tricoordinate d8-ML3-type systems with monodentate phosphanes PR3, the chemistry of η2-diphosphanylmethane complexes of rhodium with four-membered RhPCP-chelate rings and thus with enforced cis phosphane coordination and anomalously small cis P - Rh - P angles has been studied by theory and by experiment. MO calculations (EH) have been performed both for the model 14-electron system [Rh(dhpm)Cl] (dhpm = diphosphanylmethane, H2P - CH2 - PH2) and for the experimentally accessible fragment [Rh(dhbpm)Cl], where dtbpm is bis(di-tert-butylphosphanyl)-methane, (tBu)2P - CH2 - P(tBu)2. The electronic and geometric structure of these species is described. Employing the unusual ligand dtbpm, tailor-made for stabilizing mononuclear η2- and destabilizing dinuclear μ-diphosphanylmethane coordination, the chloro-bridged dimer [Rh(dtbpm)Cl]2, has been synthesized. In agreement with steric and electronic considerations, its chemistry is dominated by a facile dissociation to monomeric (presumably solvent coordinated) fragments [Rh(dtbpm)Cl], even in benzene, as suggested by molecular mass determinations. Accordingly, by using [Rh(dtbpm)Cl]2 as a starting material, a series of sterically very congested but nevertheless mononuclear, square-planar complexes Rh(dtbpm)Cl(L) (L = CO, PMe3, PPh3, PCy3, pyridine, acrylonitrile) with chelating dtbpm could be readily prepared and fully characterized. The relative stability of these potential alternative precursors of a [Rh(dtbpm)Cl] intermediate towards dissociation of ligands L is reported. The molecular structure of Rh(dtbpm)Cl(PMe3) as the first representative of this class of compounds has been determined by X-ray crystallography.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...