Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel: DFG Deutsche Nationallizenzen  (2)
  • Digitale Medien  (2)
  • 1995-1999  (2)
Datenquelle
  • Artikel: DFG Deutsche Nationallizenzen  (2)
Materialart
  • Digitale Medien  (2)
Erscheinungszeitraum
Jahr
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    The European physical journal 5 (1998), S. 681-685 
    ISSN: 1434-6052
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Physik
    Notizen: Abstract. We consider the azimuthal asymmetries in semi-inclusive deep inelastic leptoproduction arising due to both perturbative and nonperturbative effects at HERMES energies and show that the $k_T^2/Q^2$ order corrections to $\langle \cos\phi \rangle$ and $\langle \cos2\phi \rangle$ are significant. We also reconsider the results of perturbative effects for $\langle \cos\phi \rangle$ at large momentum transfers [1] using the more recent sets of scale-dependent distribution and fragmentation functions, which bring up to 18% difference in $\langle \cos\phi \rangle$ . In the same approach we calculate the $\langle \cos2\phi \rangle$ as well.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Algorithmica 22 (1998), S. 112-137 
    ISSN: 1432-0541
    Schlagwort(e): Key words. Boolean prediction, On-line algorithms, Bayes theory.
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Informatik , Mathematik
    Notizen: Abstract. We examine a general Bayesian framework for constructing on-line prediction algorithms in the experts setting. These algorithms predict the bits of an unknown Boolean sequence using the advice of a finite set of experts. In this framework we use probabilistic assumptions on the unknown sequence to motivate prediction strategies. However, the relative bounds that we prove on the number of prediction mistakes made by these strategies hold for any sequence. The Bayesian framework provides a unified derivation and analysis of previously known prediction strategies, such as the Weighted Majority and Binomial Weighting algorithms. Furthermore, it provides a principled way of automatically adapting the parameters of Weighted Majority to the sequence, in contrast to previous ad hoc doubling techniques. Finally, we discuss the generalization of our methods to algorithms making randomized predictions.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...