Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (2)
  • Electronic Resource  (2)
  • Fe amendment  (1)
  • Preservation, kidney, numan  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 31 (1992), S. 61-67 
    ISSN: 1573-0867
    Keywords: Iron phosphate ; Fe amendment ; Fe deficiency ; chlorophyll content ; Cicer arietinum L. ; chickpea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract For various reasons, iron phosphate might be effective in correcting Fe chlorosis in calcareous soils. To test this hypothesis, several pot experiments were conducted using an Fe chlorosis-sensitive chickpea (Cicer arietinum L.) cultivar cropped in soils to which partially oxidized vivianites (Fe3(PO4)2.8H2O) and Fe(III) phosphates with different characteristics had been added. Vivianites mixed with the soil at a rate of 1 g kg−1 were as effective in preventing chlorosis as Fe chelate (FeEDDHA). However, the effectiveness of Fe(III) phosphates was less, suggesting that the presence of Fe(II) in the phosphates used was a key factor in their Fe-supplying value to plants. The effectiveness of vivianites, however, seemed to be largely independent of their Fe(II) content. The future of vivianite as a Fe amendment will depend not only on economic considerations (production and application costs) but also on its long-term capacity to release plant-available Fe in soil environments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2277
    Keywords: Preservation, kidney, numan ; Kidney, preservation, human ; UW solution, kidney ; Euro-Collins solution, kidney ; ATP, kidney, human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Differences in purine metabolism produced by three preservation solutions were studied by determining the adenine nucleotide (ATP, ADP, AMP, and IMP) and nucleoside (adenosine, inosine, and hypoxanthine) levels in human kidney cortical biopsies. Forty kidney allografts were studied using University of Wisconsin (UW) solution (n=20), Euro-Collins (EC) solution (n=12), and modified EC solution with mannitol (M;n=8). No significant differences were found between the three solutions studied with regard to ATP, ADP, or AMP changes. The mean ATP level (nmol/mg prot±SEM) at the end of preservation in the UW group was 2.7±0.3 nmol/mg, in the EC group 3.8±0.7 nmol/mg, and in the M group 2.3±0.4 nmol/mg. ATP 30 min after reperfusion in the UW, EC, and M groups was 5.7±0.8 nmol/mg, 6.4±1.0 nmol/mg, and 4.6±0.5 nmol/mg, respectively. However, an important difference appeared in the catabolic products determined. Kidneys perfused with UW solution had a significantly higher level of adenosine (2.6±0.6 nmol/mg), inosine (11.8±2.2 nmol/mg), and hypoxanthine (18.1±2.1 nmol/mg) at hypoxanthine of cold storage than those perfused with EC (0.4±0.1 nmol/mg, 2.0±0.8 nmol/mg, and 7.1±1.4 nmol/mg) and M solutions (0.2±0.05 nmol/mg, 0.5±0.1 nmol/mg, and 5.2±0.6 nmol/mg; P〈0.05). These levels returned to initial values 30 min postreperfusion and there were no differences with the EC or M solution groups at that time. Thus, the adenosine present in UW solution does not appear to be useful in recovering the adenine nucleotide pool at reperfusion. Moreover, it produces a marked increase in degradation products. Our findings do not support the beneficial metabolic effect of UW solution in terms of adenine nucleotide metabolism in comparison with simpler and less expensive preservation solutions like EC.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...