Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (3)
  • Electronic Resource  (3)
  • Parapineal organ  (3)
  • 1
    ISSN: 1432-0878
    Keywords: Pineal organ ; Parapineal organ ; Retina ; Photoreceptors ; Photoneuroendocrine system ; Rodopsin ; S-Antigen ; Serotonin ; Lampetra japonica (Cyclostomata)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The pineal complex of the river lamprey, Lampetra japonica, was examined by means of immunocytochemistry with antisera against serotonin, the precursor of melatonin, and two photoreceptor proteins, rod-opsin (the apoprotein of the photopigment rhodopsin) and S-antigen. Serotonin-immunoreactive cells were observed in both the pineal and the parapineal organ. The proximal portion of the pineal organ (atrium) comprised numerous serotonin-immunoreactive cells displaying spherical somata. In the distal end-vesicle of the pineal organ, the serotonin-immunoreactive elements resembled photoreceptors in their size and shape. These cells projecting into the pineal lumen and toward the basal lamina were especially conspicuous in the ventral portion of the end-vesicle. In addition, single serotonin-immunoreactive nerve cells were found in this location. Retinal photoreceptors were never seen to contain immunoreactive serotonin; amacrine cells were the only retinal elements exhibiting serotonin immunoreaction. Strong S-antigen immunoreactivity was found in numerous photoreceptors located in the pineal end-vesicle. In contrast, the S-antigen immunoreactivity was weak in the spherical cells of the atrium. Thus, the pattern of S-antigen immunoreactivity was roughly opposite to that of serotonin. Similar findings were obtained in the parapineal organ. The rod-opsin immunoreaction was restricted to the outer segments of photoreceptors in the pineal end-vesicle and parapineal organ. No rodopsin immunoreactive outer segments occurred in the proximal portion of the atrium. Double immunostaining was employed to investigate whether immunoreactive opsin and serotonin are colocalized in one and the same cell. This approach revealed that (i) most of the rodopsin-immunoreactive outer segments in the end-vesicle belonged to serotonin-immunonegative photoreceptors; (ii) nearly all serotonin-immunoreactive cells in the end-vesicle bore short rod-opsin-immunoreactive outer segments protruding into the pineal lumen; and (iii) the spherical serotonin-immunoreactive cells in the pineal stalk lacked rod-opsin immunoreaction and an outer segment. These results support the concept that multiple cell lines of the photoreceptor type exist in the pineal complex at an early evolutionary stage.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Pineal organ ; Parapineal organ ; Opsin immunoreactivity ; Cyclostome (Lampetra fluviatilis) ; Teleosts (Anguilla anguilla, Salmo gairdneri)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The pineal complex of Lampetra fluviatilis, Anguilla anguilla and Salmo gairdneri was studied by means of the indirect immunohistochemical antiopsin reaction. Opsin-immunoreactive material was demonstrated in the outer segments of the photoreceptor cells in the pineal organ of all three species investigated. In the lamprey, the opsin-positive outer segments were located in the lumen of the pineal vesicle and atrium. In the two teleost species, the immunoreactive outer segments were observed in abundance in the pineal end-vesicle and stalk. These structures were found to accumulate in the prominent initial portion of the pineal stalk of the eel. In the rainbow trout, immunoreactive outer segments occurred in the wide orifice of the pineal recess at the roof of the third ventricle. In addition, outer segments of photoreceptor cells of the parapineal organ (“parapinealocytes”) displayed opsin immunoreactivity. In the lamprey, opsin immunoreactivity was restricted to the central portion of the ventral parapineal retina, while the parapinealocytes in the lateral portions did not bind the antibody. In the two teleosts, immunoreactive outer segments displayed a scattered pattern. These immunocytochemical results provide direct evidence that the photosensitivity of the pineal demonstrated electrophysiologically in lampreys and teleosts (cf. Dodt 1973) is based on an opsin-containing photopigment. The presence of opsin in cells of the parapineal organ strengthens the view that also this organ may be capable of direct light perception. In the lamprey, the exclusive opsin immunoreactivity of a circumscribed group of parapineal cells suggests the existence of two types of parapinealocytes. The significance of opsin-containing photoreceptor outer segments occurring in the most proximal portion of the teleost pineal stalk is discussed, especially with regard to the interpretation of results obtained from pinealectomy experiments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0878
    Keywords: Pineal photoreceptors ; Opsin immunoreactivity ; Pineal neurons ; Acetylcholinesterase reaction ; Parapineal organ ; Teleosts (Phoxinus phoxinus L.)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The pineal complex of the teleost, Phoxinus phoxinus L., was studied light-microscopically by the use of the indirect immunocytochemical antiopsin reaction and the histochemical acetylcholinersterase (AChE) method. Opsin-immunoreactive outer segments of photoreceptor cells were demonstrated in large numbers in all divisions of the pineal end-vesicle and in the pineal stalk. Moreover, they were found in the roof of the third ventricle, adjacent to the orifice of the pineal recess as well as scattered in the parapineal organ. These immunocytochemical observations provide direct evidence of the presence of an opsin associated with a photopigment in the photosensory cells of the pineal and parapineal organs of Phoxinus. By means of the AChE reaction (Karnovsky and Roots 1964) inner segments of pineal photoreceptors, intrinsic nerve cells, several intrapineal bundles of nerve fibers, and a prominent pineal tract were specifically marked. The pineal neurons can be divided into two types: one is located near the pineal lumen, the other near the basal lamina. The latter perikarya bear stained processes directed toward the photoreceptor layer. A rostral aggregation of two types of AChE-positive nerve cells occurs in the ventral wall of the pineal end-vesicle. The main portion of the AChE-positive pineal tract, which lies within the dorsal wall of the pineal stalk, can be followed to the posterior commissure where some of the nerve fibers course laterally. A few AChE-positive pineal nerve fibers run toward the lateral habenular nucleus via the habenular commissure. In the region of the subcommissural organ single AChE-positive neurons accompany the pineal tract. The nerve cells of the parapineal organ exhibit a moderate AChE activity. These findings extend the structural basis for the remarkable light-dependent activity of the pineal organ of Phoxinus phoxinus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...