Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (11)
  • Electronic Resource  (11)
  • Polymer and Materials Science  (7)
  • Pedal ganglia  (4)
Source
  • Articles: DFG German National Licenses  (11)
Material
  • Electronic Resource  (11)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 59 (1985), S. 203-205 
    ISSN: 1432-1106
    Keywords: Pteropodial mollusc ; Pedal ganglia ; Locomotion ; Lucifer yellow
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Efferent neurons in isolated pedal ganglia of the pteropodial mollusc Clione limacina were filled with Lucifer Yellow through the wing nerves. Then the ganglia were illuminated with intense blue light which resulted in the complete inactivation of these neurons. After inactivation of efferent neurons, interneurons of the pedal ganglia continued to generate the locomotor rhythm.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Pteropodial mollusc ; Pedal ganglia ; Locomotion ; Central pattern generator ; Plateau potentials
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Type 12 interneurons in pedal ganglia of Clione limacina exerted a strong influence upon the locomotor generator during “intense” swimming. These neurons generated “plateau” potentials, i.e. their membrane potential had two stable states: the “upper” one when a neuron was depolarized, and the “down” one, separated by 30–40 mV. The interneurons could remain in each state for a long time. Short depolarizing and hyperpolarizing current pulses, as well as excitatory and inhibitory postsynaptic potentials, could transfer the interneurons from one state to another. 2. When the pedal ganglia generated the locomotory rhythm, type 12 neurons received an EPSP and passed to the “upper” state in the V2-phase of a locomotor cycle. They remained at this state until the beginning of the D1-phase when they received an IPSP and passed to the “down” state. The EPSP in type 12 neurons was produced by type 8d neurons, and the IPSP by type 7 neurons. 3. Type 12 neurons exerted inhibitory influences upon many neurons active in the V1 and V2 phases, and excitatory influences upon the D-phase interneurons (type 7). 4. The functional role of type 12 neurons was to limit the activity of neurons discharging in the V-phase of a locomotory cycle. In addition, they enhanced the excitation of the D-phase neurons and promoted, thus, the transition from the V-phase to the D-phase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1106
    Keywords: Pteropodial mollusc ; Pedal ganglia ; Locomotion ; Central pattern generator ; Neuron polarization ; Tetrodotoxin ; Cobalt
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Neurons from the isolated pedal ganglia of the marine mollusc Clione limacina were recorded from intracellularly during generation of the locomotory rhythm. Polarization of single type 7 or type 8 interneurons (which discharge in the D-and V-phases of a swim cycle, respectively) strongly affected activity of the rhythm generator. Injection of depolarizing and hyperpolarizing current usually resulted in shortening and lengthening of a swim cycle, respectively. A short pulse of hyperpolarizing current shifted the phase of the rhythmic generator. The same effect could be evoked by polarization of efferent neurons of types 2, 3 and 4 which are electrically coupled to interneurons. On the contrary, polarization of types 1, 6 and 10 efferent neurons, having no electrical connections with interneurons, did not affect the locomotory rhythm. 2. A number of observations indicate that type 7 and 8 interneurons constitute the main source of postsynaptic potentials that were observed in all the “rhythmic” neurons of the pedal ganglia. Type 7 interneurons excited the D-phase neurons and inhibited the V-phase neurons; type 8 interneurons produced opposite effects. 3. Tetrodotoxin eliminated spike generation in all efferent neurons of the pedal ganglia, while in interneurons spike generation persisted. After blocking the spike discharges in all the efferent neurons, type 7 and 8 interneurons were capable of generating alternating activity. One may conclude that these interneurons determine the main features of the swim pattern, i.e., the rhythmic alternating activity of two (D and V) populations of neurons. 4. Both type 7 and type 8 interneurons were capable of endogenous rhythmic discharges with a period like that in normal swimming. This was demonstrated in experiments in which one of the two populations of “rhythmic” neurons (D or V) was inhibited by means of strong electrical hyperpolarization, as well as in experiments in which interaction between the two populations, mediated by chemical synapses, was blocked by Co2+ ions. 5. Type 7 and 8 interneurons were capable of “rebound”, i.e. they had a tendency to discharge after termination of inhibition. 6. V-phase neurons exerted not only inhibitory but also excitatory action upon D-phase neurons, the excitatory action being longer than the inhibitory one. 7. The main experimental findings correspond well to the model of rhythm generator consisting of two half centres possessing endogenous rhythmic activity. The half-centres exert strong, short duration inhibitory and weak long duration excitatory actions upon one another. The behaviour of such a model is considered and compared with that of the locomotor generator of Clione.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 63 (1986), S. 106-112 
    ISSN: 1432-1106
    Keywords: Pteropodial mollusc ; Pedal ganglia ; Locomotion ; Interneurons and efferent neurons ; Endogenous activity ; Isolated cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In the pteropodial mollusc Clione limacina, the rhythmic locomotor wing movements are controlled by the pedal ganglia. The locomotor rhythm is generated by two groups of interneurons (groups 7 and 8) which drive efferent neurons. In the present paper, the activity of isolated neurons, which were extracted from the pedal ganglia by means of an intracellular electrode, is described. The following results have been obtained: 1. Isolated type 7 and 8 interneurons preserved the capability for generation of prolonged (100–200 ms) action potentials. The frequency of these spontaneous discharges was usually within the limit of locomotor frequencies (0.5–5 Hz). By de- or hyperpolarizing a cell, one could usually cover the whole range of locomotor frequencies. This finding demonstrates that the locomotor rhythm is indeed determined by the endogenous rhythmic activity of type 7 and 8 interneurons. 2. Type 1 and 2 efferent neurons, before isolation, could generate single spikes as well as high-frequency bursts of spikes. These two modes of activity were also observed after isolating the cells. Thus, the bursting activity of type 1 and 2 neurons, demonstrated during locomotion, is determined by their own properties. Type 3 and 4 efferent neurons generated only repeated single spikes both before and after isolation. 3. The activity of the isolated axons of type 1 and 2 neurons did not differ meaningfully from the activity of the whole cells. Furthermore, in the isolated pedal commissure, we found units whose activity (rhythmically repeating prolonged action potentials) resembled the activity of type 7 and 8 interneurons. These units seemed to be the axons of type 7 and 8 interneurons. Thus, different parts of the cell membrane (soma and axons) have similar electric properties.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Letters Edition 25 (1987), S. 503-507 
    ISSN: 0887-6258
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 41 (1990), S. 2561-2567 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Polyethylene terephthalate (PET), polypropylene (PP), polyamide fibres, and films have been discharge treated. The resulting surface modifications analysed via ESR, IR, UV contact angle measurements. Discharge treatment introduces radicals and OH groups into the surface. But it does not correlate with wetability. Discharge treatment also produces the changes in conformation of macromolecules and roughness. This process is largely responsible for the wetability.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 11 (1973), S. 2209-2223 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The influence of the reactivity of the starting compounds and reaction conditions on the formation of the macromolecules of copolymers has been investigated for a nonequilibrium copolycondensation in solution by acceptor-catalytic polyesterification. In the nonequilibrium copolycondensation in solution, copolymers with different distributions of units may be formed, depending on various factors. Introduction of all amounts of acid chloride (intermonomer) in the beginning of the nonequilibrium copolycondensation leads to the formation of copolymers with statistical distribution of the units independent of the difference in reactivity of the comonomers used. For synthesis of copolymers with a block structure by one-stage nonequilibrium polycondensation in solution the initial comonomers must have different reactivities (r ≠ 1) and the rate of intermonomer introduction must be lower than that of its reaction with the more reactive comonomer. On varying the above factors, block copolymers with different lengths of block segments may be obtained.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Polymer Science 52 (1961), S. 59-62 
    ISSN: 0022-3832
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Letters Edition 22 (1984), S. 611-615 
    ISSN: 0360-6384
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0449-296X
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The propagation rate constant Kp was used as a measure of reactivity of propagation centers in ethylene polymerization with oxide catalysts. This constant was determined by a radiotracer quenching technique for oxide catalysts of different compositions and activation conditions. For catalysts based on various transition metal oxides, an increase of Kp was observed in the series W 〈 Mo 〈 Cr and V 〈 Cr. In the case of chromium oxide catalyst it was shown that Kp value does not depend on the content of the transition metal in a catalyst. A change of propagation center reactivity was found when oxides of different composition (SiO2, Al2O3, ZrO2, TiO2) were used as supports. An increase of the vacuum activation temperature of a catalyst results in increasing Kp. Pretreatment of catalyst with different reducing agents (SO2, CO2, NH3, HCN) results in the change of Kp value in comparison in comparison with the catalyst activated by the vacuum treatment only. The data obtained on the variation of the reactivity of the propagation centers permit one to draw a conclusion about the composition of surface compounds as acitve centers of the oxide polymerization catalysts.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...