Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (3)
  • 1985-1989
  • 1970-1974  (3)
  • 1973  (3)
Source
  • Articles: DFG German National Licenses  (3)
Material
Years
  • 1985-1989
  • 1970-1974  (3)
Year
  • 1
    facet.materialart.
    Unknown
    Chicago, Ill. : Periodicals Archive Online (PAO)
    Modern Age. 17:4 (1973:Fall) 439 
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 279 (1973), S. 243-254 
    ISSN: 1432-1912
    Keywords: Neuroleptics ; Antidepressants ; Isolated Perfused Rat Brain ; High Energy Phosphates ; Glycolytic Pathway
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The isolated perfused rat brain was used for a comparative study of the effects of promazine, imipramine, monodesmethyl promazine and desipramine on cerebral energy metabolism. After perfusion for 30 min or 1 h the brain levels of the following substrates and metabolites were estimated: P-creatine, creatine, ATP, ADP, AMP, glycogen, glucose, glucose-6-P, fructose diphosphate, dihydroxyacetone-P, pyruvate, lactate, α-ketoglutarate, and ammonia. Drug concentrations of 5·10−6 M and 10−5 M in the perfusion medium caused a significant decrease of glucose-6-P alone. When the drug concentration was raised to a toxic range (10−4 M), reflected in the EEG by the pattern of secondary discharges, an accumulation of P-creatine and glucose and a decrease of glycogen, glucose-6-P and ammonia occurred; the lactate/pyruvate ratios remained unchanged. As there were no qualitative differences between the effects of the investigated neuroleptics and antidepressants on cerebral metabolism, these effects might be unspecific and not correlated with the pharmacological action of the drugs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 277 (1973), S. 323-332 
    ISSN: 1432-1912
    Keywords: Chloral Hydrate ; Trichloroethanol ; Isolated Perfused Rat Brain ; High-Energy Phosphates ; Glycolytic Pathway
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The isolated perfused rat brain was used for a comparative study of the effects of chloral hydrate and trichloroethanol on cerebral energy metabolism. After a perfusion period of 30 min the brain levels of the following substrates and metabolites were measured spectrophotometrically: P-creatine, creatine, ATP, ADP, AMP, glycogen, glucose, glucose-6-P, fructose diphosphate, α-glycero-P, dihydroxyacetone-P, pyruvate, lactate, glutamate, α-ketoglutarate and ammonia. Furthermore, the concentration of chloral hydrate and trichloroethanol in the isolated brain and in the perfusion medium was measured colorimetrically. Little more than 10% of chloral hydrate in the isolated brain and in the perfusion medium were reduced to trichloroethanol. In intact animals there were about 70% of chloral hydrate transformed. Chloral hydrate and trichloroethanol caused an accumulation of P-creatine, no change in the lactate/pyruvate ratio, an increase of the glucose concentration and a decrease of glucose-6-P level in the isolated brain. The rise of brain glucose level was more pronounced after trichloroethanol than after chloral hydrate. The effects of chloral hydrate and trichloroethanol on brain glucose and glucose-6-P levels suggest an inhibition of brain hexokinase activity by these drugs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...