Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (1)
  • 2000-2004
  • 1985-1989
  • 1980-1984  (1)
  • 1975-1979
  • 2002
  • 1983  (1)
  • Polymer and Materials Science  (1)
Source
  • Articles: DFG German National Licenses  (1)
Material
Years
  • 2000-2004
  • 1985-1989
  • 1980-1984  (1)
  • 1975-1979
Year
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 28 (1983), S. 3827-3848 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: This paper describes and analyzes the results of an experiment where various thin polymeric films are continuously sheared between smooth glass substrates. The shear force per unit area has been measured as a function of mean uniaxial stress and temperature using representative “good” and “poor” casting solvents followed by a range of heat treatments. The polymers studied include high density polyethylene, polybisphenol-A-carbonate, poly(ethylene terephthalate), atactic polystyrene, isotactic polystyrene, atactic poly(methyl methacrylate), isotactic poly(methyl methacrylate), poly(vinyl acetate), poly(vinyl alcohol), poly(vinyl pyrrolidone), poly(vinyl chloride), and polytetrafluoroethylene. The results indicate that the casting solvent has a very pronounced influence upon the rheology of the film. The casting solvents may apparently confer either ductile or brittle failure in the film and also influence the nature of the temperature and pressure dependence of the shear stress. The data have been analyzed using Eyring theory and also by reference to relevant published literature on the influence of solvent and thermal treatments on the morphology and deformation behavior of polymers. “Good” solvents generally tend to promote a brittle mode of failure with little temperature dependence. The same type of solvents also produced films which have higher shear strengths and show greater increases in shear strength with pressure. These data are adequately rationalized using free volume and entanglement notions.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...