Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (2)
  • 2000-2004  (2)
  • 1880-1889
  • Flooded rice systems  (2)
  • 1
    ISSN: 1432-0789
    Keywords: Key words Denitrification ; N mineralization ; Semiarid subtropical soils ; Flooded rice systems ; Nearly saturated rice systems
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The influence of fertilizer N applied through nitrate and ammoniacal sources on the availability of nitrate, supply of C, and gaseous N losses via denitrification (using acetylene inhibition technique) in a semiarid subtropical soil (Typic Ustochrepts) was investigated in a growth chamber simulating upland [60% water-filled pore space (WFPS)], nearly saturated (90% WFPS), and flooded (120% WFPS) conditions. The rate of denitrification was very low in the upland soil conditions, irrespective of fertilizer N treatments. Increasing water content to nearly saturated and flooded conditions resulted in four- to sixfold higher rates of denitrification within 2 days, suggesting that the denitrifying activity commences quickly. Results of this study reveal that (1) under restricted aeration, these soils could support high rates of denitrification (∼6 mg N kg–1 day–1) for short periods when nitrate is present; (2) application of fertilizer N as nitrate enhances N losses via denitrification (∼10 mg N kg–1 day–1) – however, the supply of available C determines the intensity and duration of denitrification; (3) when fertilizer N is applied as an ammoniacal form, nitrification proceeds slowly and nitrate availability limits denitrification in flooded soil; (4) the nearly saturated soil, being partially aerobic, supported greater nitrification of applied ammoniacal fertilizer N than flooded soil resulting in higher relative rates of denitrification; and (5) under aerobic soil conditions, 26 mg mineral N kg–1 accumulated in control soil over a 16-day period, demonstrating a modest capacity of such semiarid subtropical soils, low in organic matter, to supply N to growing plants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0789
    Keywords: Key words Denitrification ; N mineralization ; Semiarid subtropical soils ; Flooded rice systems ; Water regime
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Nitrogen and carbon mineralization of cattle manure (N=6 g kg–1; C:N=35), pressmud (N=17.4 g kg–1; C:N=22), green manure (N=26.8 g kg–1; C:N=14) and poultry manure (N=19.5 g kg–1; C:N=12) and their influence on gaseous N losses via denitrification (using the acetylene inhibition technique) in a semiarid subtropical soil (Typic Ustochrepts) were investigated in a growth chamber simulating upland, nearly saturated, and flooded conditions. Mineralization of N started quickly in all manures, except pressmud where immobilization of soil mineral N was observed for an initial 4 days. Accumulation of mineral N in upland soil plus denitrified N revealed that mineralization of cattle manure-, pressmud-, poultry manure- and green manure-N over 16 days was 12, 20, 29 and 44%, respectively, and was inversely related to C:N ratio (R 2=0.703, P=0.05) and directly to N content of organic manure (R 2=0.964, P=0.01). Manure-C mineralized over 16 days ranged from 6% to 50% in different manures added to soil under different moisture regimes and was, in general, inversely related to initial C:N ratio of manure (R 2=0.690, P=0.05). Cumulative denitrification losses over 16 days in control soils (without manure) under upland, nearly saturated, and flooded conditions were 5, 23, and 24 mg N kg–1, respectively. Incorporation of manures enhanced denitrification losses by 60-82% in upland, 52–163% in nearly saturated, and 26–107% in flooded soil conditions over a 16-day period, demonstrating that mineralized N and C from added manures could result in 2- to 3-fold higher rate of denitrification. Cumulative denitrification losses were maximal with green manure, followed by poultry manure, pressmud and cattle manure showing an increase in denitrification with increasing N content and decreasing C:N ratio of manure. Manure-amended nearly saturated soils supported 14–35% greater denitrification than flooded soils due to greater mineralization and supply of C.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...