Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (2)
  • 2000-2004  (2)
  • Biomechanics  (1)
  • H2 evolution and uptake  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The protein journal 19 (2000), S. 671-678 
    ISSN: 1573-4943
    Keywords: Azotobacter vinelandii ; nitrogenase activity ; hydrogenase activity ; redox mediators ; H2 evolution and uptake ; redox potential ; electron transfer chain
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract In bioelectrochemical studies, redox mediators such as methylene blue, natural red, and thionine are used to studying the redox characteristics of enzymes in the living cell. Here we show that nitrogenase activity in Azotobacter vinelandii is completely inhibited by oxidized methylene blue (MBo) when the concentration of this mediator in the medium is increased up to 72 μM. This activity in A. vinelandii is somewhat inhibited by a coenzyme, ascorbic acid (AA). However, the nitrogenase activity within the A. vinelandii cell is unchanged even for a high concentration of oxidized natural red (NRo) alone. Interestingly, these mediators and AA do not have the capacity to inhibit the H2 uptake activity of the hydrogenase in A. vinelandii. Average active rates of 66 nM H2 evolved/mg cell protein/min from the nitrogenase and 160 nM H2-uptake/mg cell protein/min from the hydrogenase in A. vinelandii are found in aid of the activities of the enzymes for H2 evolution and for H2 uptake are compared. The activities of both enzymes in A. vinelandii are strongly inhibited by thionine having high oxidative potential. Mechanisms of various mediators acting in vivo for both enzymes in A. vinelandii are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Medical & biological engineering & computing 38 (2000), S. 253-259 
    ISSN: 1741-0444
    Keywords: Brain contusion ; Finite element ; Shear strain ; Cavitation ; Biomechanics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The mechanism of brain contusion has been investigated using a series of three-dimensional (3D) finite element analyses. A head injury model was used to simulate forward and backward rotation around the upper cervical vertebra. Intracranial pressure and shear stress responses were calculated and compared. The results obtained with this model support the predictions of cavitation theory that a pressure gradient develops in the brain during indirect impact. Contrecoup pressure-time histories in the parasagittal plane demonstrated that an indirect impact induced a smaller intracranial pressure (−53.7 kPa for backward rotation, and −65.5 kPa for forward rotation) than that caused by a direct impact. In addition, negative pressures induced by indirect impact to the head were not high enough to form cavitation bubbles, which can damage the brain tissue. Simulations predicted that a decrease in skull deformation had a large effect in reducing the intracranial pressure. However, the areas of high shear stress concentration were consistent with those of clinical observations. The findings of this study suggest that shear strain theory appears to better account for the clinical findings in head injury when the head is subjected to an indirect impact.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...