Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (2)
  • 2000-2004  (2)
Source
  • Articles: DFG German National Licenses  (2)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 113 (2000), S. 329-338 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Ultraviolet (UV) photodissociation experiments are carried out for Arn(HBr) clusters in which the HBr is adsorbed on the surface of the Arn, and also on isomers of these systems in which HBr is embedded within the rare-gas cluster. The mean size of the cluster distribution in the experiments is around n¯=130. The kinetic energy distribution (KED) of the hydrogen atoms that left the clusters is measured. Molecular dynamics (MD) simulations of the photodissociation of the chemically similar clusters Arn(HCl) are used to provide a qualitative interpretation of the experimental results. The clusters with embedded HBr give a very cold H-atom KED. The clusters with the surface-adsorbed HBr give a KED with two peaks, one corresponding to very low energy H atoms and the other pertaining to high energies, of the order of 1.35 eV. The theoretical simulations show that already for n=54, there is a strong cage effect for the "embedded" molecule case, resulting in slow H atoms. The surface-adsorbed case is interpreted as due to two types of possible adsorption sites of HX on Ar55: for a locally smooth adsorption site, the cage effect is relatively weak, and hot H atoms emerge. Sites where the HBr is adsorbed at a vacancy of Arn lead to "encapsulation" of the H atom produced, with a strong cage effect. A weak tail of H atoms with energies well above the HBr monomer excess energy is observed for the embedded case. Simulations support that this is due to a second photon absorption by recombined, but still vibrationally hot, HBr. The results throw light on the differences between the cage effect inside bulk structure and at surfaces. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 114 (2001), S. 4755-4758 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We report the first production of the molecule HXeI, which is bound by ionic forces, in the gas phase. The molecule is generated by the photodissociation of HI molecules on a large Xen cluster and is identified by detecting the asymmetric distribution of the H atom fragments of the oriented HXeI. The orientation is achieved in a combined pulsed laser and weak electrostatic field making use of the large anisotropy in the polarizability and the large dipole moment of this molecule. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...