Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (2)
  • 1995-1999  (1)
  • 1970-1974  (1)
  • 1860-1869
  • Chemistry  (1)
  • Chilocorus  (1)
Source
  • Articles: DFG German National Licenses  (2)
Material
Years
  • 1995-1999  (1)
  • 1970-1974  (1)
  • 1860-1869
  • 1965-1969  (1)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental and applied acarology 19 (1995), S. 677-694 
    ISSN: 1572-9702
    Keywords: Hemisarcoptes ; Chilocorus ; mites ; parasitism ; phoresy ; tritium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Using tritium as a radiolabel marker of interspecific fluid transfer, we present experimental evidence that the heteromorphic deutonymph of an astigmatid mite (Hemisarcoptes cooremani) acquires materials (at least water) directly from the haemolymph of its beetle host (Chilocorus cacti). This acquisition is above that obtained from atmospheric vapour. The material acquired from the host is necessary for the completion of the ontogeny of H. cooremani and is likely procured through the action of the caudal ventral suckers of the heteromorphic deutonymph (hypopus). On gross morphological criteria, this mite-beetle relationship was previously defined as phoretic (for dispersal). Scanning electron photomicrographs of the physical relationship between the hypopodes and the heetles shed light on the ‘parasitic’ nature of the hypopus of H. cooremani. Our findings are discussed in terms of the evolution of parasitism from a free-living astigmatid form. This transition into parasitism is facilitated by the heteromorphic hypopus and represents a classic ‘wolf-insheep's-clothing’ strategy. The heteromorph retains the characteristic phoretic morphology while exploiting the host in transit.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 18 (1974), S. 709-725 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The radiation-induced polymerization of methyl methacrylate was investigated with radiation sources of cobalt 60 and accelerated electrons at dose rates up to 3 Mrads/sec. Extrapolation of previous rates of polymerization at dose rates of 0.01-200 rads/sec coincided with the present results, the rates being approximately proportional to the square root of the dose rate throughout the entire set of dose rates measured. The molecular weights seemed to be independent of dose rate at the highest dose rates investigated. A combination of high polymer with a much higher molecular weight than expected was formed, together with a substantial portion of low molecular weight polymer. The reason for this behavior is not clear at this time. The G(M·) calculated from the molecular weights and fraction of polymer and resin was 6.0, which approaches that reported in previous investigations at low dose rates. There was no significant effect of air on the polymerization kinetics of methyl methacrylate at above 1 Mrad/sec. Nitrogen also did not influence the measured rates. Conversions to polymer were not substantially reduced by the presence of inhibitor at above 1.26 × 105 rads/sec. Water did not influence the rates of polymerization, except at the highest temperature (50°C) investigated. A large posteffect was observed in sealed degassed ampoules after 25% conversion to polymer. Only 3.4% additional polymer was formed in 24 hr after irradiation in the presence of air. The activation energy for the electron beam polymerization of methyl methacrylate was about 7.0 kcal/mole. This value, considering the complications in technique such as beam heating, did not differ from literature data enough to suggest any mechanistic difference in the polymerization at high dose rates.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...