Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (3)
  • 1995-1999  (3)
  • Cholinergic antagonist  (2)
  • Anticipation of conflict  (1)
Source
  • Articles: DFG German National Licenses  (3)
Material
Years
  • 1995-1999  (3)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Acta diabetologica 33 (1996), S. 263-268 
    ISSN: 1432-5233
    Keywords: Insulin-induced hypotension ; Adrenergic antagonists ; Ganglionic blockers ; Cholinergic antagonist ; Atropine ; Hexamethonium ; Prazosin ; Atenolol ; L-NAME ; Nitric oxide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The mechanisms associated with insulin-induced cardiovascular inhibitory responses were evaluated in untreated normal rats and in normal rats pretreated with an antagonist of nitric oxide (NO) production (L-NAME), with cholinergic, alpha- and beta-adrenergic antagonists, or after ganglionic blockade. Male Wistar rats were anesthetized with a mixture of urethane and alpha-chloralose and placed on a electric heating pad. The femoral artery and vein were cannulated for measurements of mean arterial pressure (MAP), heart rate, plasma glucose, blood sampling, and intravenous injections. Intravenous injection of insulin (5.0 U/kg) in untreated rats resulted in a significant and sustained decrease in arterial blood pressure (average 24%) and in a slight decrease in heart rate. These cardiovascular responses were blocked by L-NAME and by the cholinergic antagonist atropine, suggesting an involvement of NO and the cholinergic receptors, or an effect of insulin on the central nervous system parasympathetic center. The ganglionic blocker hexamethonium attenuated the insulin-induced response. On the other hand, the hypotensive effect of insulin persisted after sympathetic blockade with the alpha-1 antagonist prazosin and the beta-1 antagonist atenolol. We conclude that the insulin-induced decrease in blood pressure is due to both increased cholinergic outflow and to NO production and that an enhanced sympathetic activity possibly mediated by a reactive release of norepinephrine or epinephrine modulates this response.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Acta diabetologica 33 (1996), S. 263-268 
    ISSN: 1432-5233
    Keywords: Key words Insulin-induced hypotension ; Adrenergic antagonists ; Ganglionic blockers ; Cholinergic antagonist ; Atropine ; Hexamethonium ; Prazosin ; Atenolol ; L-NAME ; Nitric oxide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The mechanisms associated with insulin-induced cardiovascular inhibitory responses were evaluated in untreated normal rats and in normal rats pretreated with an antagonist of nitric oxide (NO) production (L-NAME), with cholinergic, alpha- and beta-adrenergic antagonists, or after ganglionic blockade. Male Wistar rats were anesthetized with a mixture of urethane and alpha-chloralose and placed on a electric heating pad. The femoral artery and vein were cannulated for measurements of mean arterial pressure (MAP), heart rate, plasma glucose, blood sampling, and intravenous injections. Intravenous injection of insulin (5.0 U/kg) in untreated rats resulted in a significant and sustained decrease in arterial blood pressure (average 24%) and in a slight decrease in heart rate. These cardiovascular responses were blocked by L-NAME and by the cholinergic antagonist atropine, suggesting an involvement of NO and the cholinergic receptors, or an effect of insulin on the central nervous system parasympathetic center. The ganglionic blocker hexamethonium attenuated the insulin-induced response. On the other hand, the hypotensive effect of insulin persisted after sympathetic blockade with the alpha-1 antagonist prazosin and the beta-1 antagonist atenolol. We conclude that the insulin-induced decrease in blood pressure is due to both increased cholinergic outflow and to NO production and that an enhanced sympathetic activity possibly mediated by a reactive release of norepinephrine or epinephrine modulates this response.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Primates 37 (1996), S. 79-86 
    ISSN: 0032-8332
    Keywords: Anticipation of conflict ; Grooming ; Chimpanzees ; Tolerated theft
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Captive chimpanzees appear to anticipate the occurrence of conflict during feeding by grooming and being in proximity at increased rates during the hour prior to feeding. The effect is more marked when food is clumped than when it is dispersed, suggesting that the proximate cause is the anticipation of increased levels of competition. Chimpanzees did not choose high ranking individuals more often as prefeed grooming partners; rather, they preferred to associate with their normal grooming partners (as reflected in post-feed grooming preferences) and close kin. A strong correlation between prefeed association patterns and spatial proximity during clumped feeding sessions suggests that their main concern is to be allowed to feed near individuals who are able to monopolize food sources.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...