Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (2)
  • 1995-1999  (2)
  • Photochemistry  (1)
  • divide-and-conquer  (1)
Source
  • Articles: DFG German National Licenses  (2)
Material
Years
  • 1995-1999  (2)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 176 (1995), S. 437-453 
    ISSN: 1432-1351
    Keywords: Compound eye ; Dragonfly ; Electrophysiology ; Optics ; Photochemistry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Dragonflies of the genus Sympetrum have compound eyes conspicuously divided into dorsal and ventral regions. Using anatomical, optical, electrophysiological, in-vivo photochemical and microspectrophotometrical methods, we have investigated the design and physiology of the dorsal part which is characterized by a pale yellow-orange screening pigment and extremely large facets. The upper part of the yellow dorsal region is a pronounced fovea with interommatidial angles approaching 0.3°, contrasting to the much larger values of 1.5°–2° in the rest of the eye. The dorsal eye part is exclusively sensitive to short wavelengths (below 520 nm). It contains predominantly blue-receptors with a sensitivity maximum at 420 nm, and a smaller amount of UV-receptors. The metarhodopsin of the blue-receptors absorbs maximally at 535 nm. The yellow screening pigment transmits longwavelength light (cut-on 580 nm), which increases the conversion rate from metarhodopsin to rhodopsin (see Fig. 11a). We demonstrate that because of the yellow pigment screen nearly all of the photopigment is in the rhodopsin state under natural conditions, thus maximizing sensitivity. Theoretical considerations show that the extremely long rhabdoms (1.1 mm) in the dorsal fovea are motivated for absorption reasons alone. A surprising consequence of the long rhabdoms is that the sensitivity gain, caused by pumping photopigment into the rhodopsin state, is small. To explain this puzzling fact we present arguments for a mechanism producing a gradient of rhodopsin concentration along the rhabdom, which would minimize saturation of transduction units, and hence improve the signal-to-noise ratio at high intensities. The latter is of special importance for the short integration time and high contrast sensitivity these animals need for spotting small prey at long distances.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Statistics and computing 8 (1998), S. 159-173 
    ISSN: 1573-1375
    Keywords: Bayesian network ; belief revision ; charge ; conditional independence ; divide-and-conquer ; evidence ; flow ; junction tree ; marginalization ; maximization ; most probable explanation ; potential function ; propagation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract A probabilistic expert system provides a graphical representation of a joint probability distribution which enables local computations of probabilities. Dawid (1992) provided a ‘flow- propagation’ algorithm for finding the most probable configuration of the joint distribution in such a system. This paper analyses that algorithm in detail, and shows how it can be combined with a clever partitioning scheme to formulate an efficient method for finding the M most probable configurations. The algorithm is a divide and conquer technique, that iteratively identifies the M most probable configurations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...