Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (3)
  • 1995-1999  (3)
  • programmed cell death  (3)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Bioscience reports 17 (1997), S. 67-76 
    ISSN: 1573-4935
    Keywords: Apoptosis ; necrosis ; mitochondria ; megachannel ; permeability transition ; programmed cell death ; poteases
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Mitochondrial permeability transition (PT) involves the formation of proteaceous, regulated pores, probably by apposition of inner and outer mitochondrial membrane proteins which cooperate to form the mitochondrial megachannel (=mitochondrial PT pore). PT has important metabolic consequences, namely the collapse of the mitochondrial transmembrane potential, uncoupling of the respiratory chain, hyperproduction of superoxide anions, disruption of mitochondrial biogenesis, outflow of matrix calcium and glutathione, and release of soluble intermembrane proteins. Recent evidence suggests that PT is a critical, rate limiting event of apoptosis (programmed cell death): (i) induction of PT suffices to cause apoptosis; (ii) one of the immediate consequences of PT, disruption of the mitochondrial transmembrane potential (ΔΨm), is a constant feature of early apoptosis; (iii) prevention of PT impedes the ΔΨm collapse as well as all other features of apoptosis at the levels of the cytoplasma, the nucleus, and the plasma membrane; (iv) PT is modulated by members of the apoptosis-regulatory bcl-2 gene family. Recent data suggest that the acquisition of the apoptotic phenotype, including characteristic changes in nuclear morphology and biochemistry (chromatin condensation and DNA fragmentation), depends on the action of apoptogenic proteins released from the mitochondrial intermembrane space.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 29 (1997), S. 185-193 
    ISSN: 1573-6881
    Keywords: Mitochondrial transmembrane potential ; permeability ; transition ; programmed cell death ; proteases
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract Both physiological cell death (apoptosis) and at least some cases of accidental cell death (necrosis) involve a two-step-process. At a first level, numerous physiological or pathological stimuli can trigger mitochondrial permeability transition which constitutes a rate-limiting event and initiates the common phase of the death process. Mitochondrial permeability transition (FT) involves the formation of proteaceous, regulated pores, probably by apposition of inner and outer mitochondrial membrane proteins which cooperate to form the mitochondrial PT pore complex. Inhibition of PT by pharmacological intervention on mitochondrial structures or mitochondrial expression of the apoptosis-inhibitory oncoprotein Bcl-2 thus can prevent cell death. At a second level, the consequences of mitochondrial dysfunction (collapse of the mitochondrial transmembrane potential, uncoupling of the respiratory chain, hyperproduction of superoxide anions, disruption of mitochondrial biogenesis, outflow of matrix calcium and glutathione, and release of soluble intermembrane proteins) can entail a bioenergetic catastrophe culminating in the disruption of plasma membrane integrity (necrosis) and/or the activation and action of apoptogenic proteases with secondary endonuclease activation and consequent oligonucleosomal DNA fragmentation (apoptosis). The acquisition of the biochemical and ultrastructural features of apoptosis critically relies on the liberation of apoptogenic proteases or protease activators from the mitochondrial intermembrane space. This scenario applies to very different models of cell death. The notion that mitochondrial events control cell death has major implications for the development of death-inhibitory drugs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Cell biology and toxicology 14 (1998), S. 141-145 
    ISSN: 1573-6822
    Keywords: mitochondrial transmembrane potential ; permeability transition ; programmed cell death ; proteases
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Apoptosis has classically been viewed as a process not involving mitochondria, whereas the implication of mitochondrial dysfunction in necrosis has been recognized for several decades. Recently, it has become clear that apoptosis implies a disruption of mitochondrial membrane intregrity that is decisive for the cell death process. Cytofluorometric methods assessing the mitochondrial membrane function and structure can be employed to demonstrate that, at least in most models of apoptosis, mitochondrial changes precede caspase and nuclease activation. Moreover, pharmacological and genetic experiments suggest that the loss of mitochondrial membrane integrity is a critical event of the apoptotic process, beyond or at the point of no return of programmed cell death. Inhibitors of the mitochondrial megachannel (= permeability transition pore) can prevent both the mitochondrial and the post-mitochondrial manifestations of apoptosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...