Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (9)
  • 1995-1999  (9)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials synthesis and processing 6 (1998), S. 387-392 
    ISSN: 1573-4870
    Keywords: Reaction mechanism ; interfacial structure ; ceramic-metal joint ; vanadium carbide ; vanadium silicide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract SiC was bonded to SiC using V foil at temperatures ranging from 1473 K to 1673 K for 1.8 to 64.8 × 103 s and 30 MPa in vacuum. Interfacial reactions and microstructures were investigated using electron probe microanalyser and X-ray diffractometer. SiC begins to react with V at temperatures above 1473 K. Granular V2C phase was formed at the V side of the reaction zone, while a layer of V3Si phase was formed at the interface between V2C and SiC after bonding at 1573 K for 1.8 and 7.2 × 103 s. The same reaction structure can be observed at 1473 and 1673 K for 1.8 × 103 s. Hexagonal V5Si3Cx (X 〈 1) phase was formed at the interface between V3Si and SiC after bonding at 1573 K for 14.4 and 21.6 × 103 s, and the interface structure of the joint became SiC/V5Si3Cx/V3Si/V2C + V/V. This microstructure represents a complete diffusion path which is correlated with the corresponding Si-V-C phase diagram. At the longer bonding time of 64.8 × 103 s, V was completely consumed, and the joint showed the layer structure of SiC/V5Si3Cx/V3Si/V2C/V3Si/V5Si3Cx/SiC.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials synthesis and processing 6 (1998), S. 169-173 
    ISSN: 1573-4870
    Keywords: Ceramic-metal joining ; interface structure ; bonding strength ; silicon carbide ; chromium silicide ; chromium carbide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Solid-state bonding at pressureless-sintered SiC has been carried out using 25-μm Cr foil at temperatures from 1373 to 1773 K for 1.8 ks in vacuum. The formation of reaction phases and microstructures at the interface between SiC and Cr was investigated by X-ray diffraction and microprobe analysis. At the bonding temperature of 1373 K the cubic Cr23C6phase formed next to Cr, and the hexagonal Cr7C3 phase formed next to SiC. At 1473 K the cubic phase Cr3SiCx appeared additionally on the SiC side. At 1573 K the complete diffusion path was established. Upon increasing the joining temperature beyond 1573 K all the chromium was consumed, and Cr23C6 and Cr3SiC x dissolved. A layered structure consisting of SiC/Cr5Si3 C x /Cr7C3/Cr5Si3 C x /SiC occurred.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 16 (1997), S. 1116-1117 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Abstracts are not published in this journal
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 15 (1996), S. 1025-1027 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 15 (1996), S. 1028-1029 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 15 (1996), S. 1203-1204 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 15 (1996), S. 1353-1354 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The composite interfaces play an important role in determining the resultant composite properties, especially the development of interfacial reaction during remelting is critical to the commercialization and sustainable-development of metal matrix composites. In this paper, the interfacial reaction characteristics of SiCp/Al-Si system composites during multiple-remelting were investigated by Differential Scanning Calorimeter (DSC). It was found that the interfacial reactions were not sensitive to remelting number, remelting temperature and reinforcement volume fraction after a degree of reaction, and the results also suggested that the preventation effects of Si upon the interfacial reaction SiCp/Al were mainly attributed to the Si released from the interfacial reaction, while the original Si content in the master alloy also has the same effect only after a given Si content.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 33 (1998), S. 2869-2874 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract AlN ceramics are bonded using vanadium metal foils at high temperatures in vacuum. Different bonding temperatures were used in the range 1373–1773 K with bonding times of 0.3–21.6 ks. The AlN/V interfaces of the bonded joints were investigated using SEM, electron probe microanalysis and X-ray diffraction. A bonding temperature of 1573 K was found to be suitable to activate both parts to initiate a phase reaction at the interface, because a thin V(Al) solid solution layer formed adjacent to the ceramic at 1573 K just after 0.9 ks, and a small flake-shaped V2N reaction product formed inside the vanadium central layer. The formation of V(Al) and V2N controls the interfacial joining of the AlN/V system at 1573 K up to 5.4 ks bonding time. The pure vanadium layer quickly changed to vanadium-containing V2N. The diffusion path could be predicted for the AlN/V joints up to 0.9 ks at 1573 K following the sequence AlN/V(Al)/V2N/V, while after 0.9 ks, the interface structure changed to AlN/V(Al)/V2N + V by the growth Of V2N into the vanadium. The AlN/V joints shovyed no ternary compounds at the interface. A maximum bond strength could be obtained for a joint bonded at 1573 K after 5.4 ks having a structure of AlN/V(Al)/V2N + V. At 7.2 ks, nitrogen, resulting from AlN decomposition, escaped and the remaining aluminium reacted with V(Al) to form V5Al8 intermetallic, which is attributable to the decrease in bond strength.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...