Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (2)
  • 1990-1994  (2)
  • 1975-1979
  • Calcium-activated nonselective channel  (1)
  • Chemical modification  (1)
  • 1
    ISSN: 1432-1424
    Keywords: KATP channels ; Chemical modification ; Sulfhydryl group ; Basic amino acids ; Pancreatic β-cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The effects of several group-specific chemical reagents were examined upon the activity of the ATP-sensitive potassium (KATP) channel in the CRI-G1 insulin-secreting cell line. Agents which interact with the sulfhydryl moiety (including 1 mM N-ethylmaleimide (NEM), 1 mM 5,5′-dithio-bis-(2-nitrobenzoic acid) (DNTB) and 1 mm o-iodobenzoate) produced an irreversible inhibition of KATP channel activity when applied to the intracellular surface of excised inside-out patches. This inhibition was substantially reduced when attempts were made to eliminate Mg2+ from the intracellular compartment. ATP 50 μm and 100 μm tolbutamide were each shown to protect against the effects of these reagents. The membrane impermeable DNTB was significantly less effective when applied to the external surface of outside-out patches. Agents which interact with peptide terminal amine groups and ɛ amino groups of lysine [1 mm methyl acetimidate and 1 mm trinitrobenzene sulfonic acid (TNBS)] and also the guanido group of arginine (1 mm methyl glyoxal) produced a Mg2+-dependent irreversible inhibition of KATP channel activity which could be prevented by ATP but not tolbutamide. The irreversible activation of the KATP channel produced by the proteolytic enzyme trypsin was prevented only when methyl glyoxal and methyl acetimidate were used in combination to inhibit channel activity. Radioligand binding studies showed that the binding of 3H glibenclamide was unaffected by any of the above agents with the exception of TNBS which completely inhibited binding with a EC50 of 307 ±6 μm. These results provide evidence for the presence of essential sulfhydryl (possibly cysteine), and basic amino acid (possibly lysine and arginine) residues associated with the normal functioning of the KATP channel. Furthermore, we believe that the sulfhydryl group in question is situated at the internal surface of the membrane, possibly near to the channel pore.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1424
    Keywords: Calcium-activated nonselective channel ; Rat insulinoma cell line ; CRI-G1 ; Pyridine nucleotides β-NAD+-NS+ channel ; Nucleotide regulation ; AMP
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The activity of a calcium-activated nonselective (Ca-NS+) channel in a rat insulinoma cell line (CRI-G1) is inhibited by pyridine nucleotides in excised patches. The effects of all four pyridine nucleotides tested, β-NAD+, β-NADH, β-NADP+ and β-NADPH were very similar when tested at 0.1 mm, and at 1 mm the phosphorylated forms, β-NADP+ and β-NADPH, appeared to be slightly more potent than β-NAD+ and β-NADH. All the pyridine nucleotides tested reduced both the open state probability of the channel and the number of functional channels observed in a single patch. The application of β-NAD+, but not of the other nucleotides tested, to the cytoplasmic surface of isolated inside-out patches from CRI-G1 cells opened a novel nonselective cation channel (the β-NAD+-NS+ channel). The activity of this new channel is calcium sensitive and may also be inhibited by AMP.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...