Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (2)
  • 1990-1994  (2)
  • Brownian dynamics  (1)
  • planar Couette flows  (1)
Source
  • Articles: DFG German National Licenses  (2)
Material
Years
  • 1990-1994  (2)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 15 (1994), S. 1085-1091 
    ISSN: 1572-9567
    Keywords: Brownian dynamics ; rheology ; semidilute polymer solutions ; viscosity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We report preliminary results of simulations of the steady-state rheological behavior for semidilute polymer solutions of head-and-spring chain models in planar Couette now. The simulations include examination of the effects of excluded volume. hydrodynamic interactions and density. Hydrodynamic interactions are modeled by the Rotne -Prager Yamakawa tensor. The simulations are based on the nonequilibrium Brownian dynamics algorithm of Ermak and McCammon. In addition to the spring potential between neighboring beads in the chain. the interaction between any two beads in the solution is modeled using a shifted, repulsive Leonard-Jones potential. Lees Edward sliding brick boundary conditions are used for consistency with the Couette flow field.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 15 (1994), S. 1125-1134 
    ISSN: 1572-9567
    Keywords: liquid crystals ; nematic phase ; noneyuilibrium molecular dynamics ; planar Couette flows ; rheology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract During the last 15 years, noneyuilibrium molecular dynamics (NEMD) has been successfully applied to study transport phenomena in fluids that are isotropic at equilibrium. A natural extension is therefore to study liquid crystals, which are anisotropic al equilibrium. The lower symmetry of these systems means that the linear transport coefficients are considerably more complicated than in an isotropic system. Part of the reason for this is that there are crosscouplings between tensors of different rank and parity. Such couplings arc symmetry-forbidden in isotropic phases. In this paper. we review some of fundamental theoretical results we have derived concerning the rheology of liquid crystals. report NEMD simulations of thermal conductivity and shear viscosity of liquid crystals, and present NEMD simulations of shear cessation phenomena. All of the NEMD results are presented for a model liquid crystal fluid which is a modification of the Gay-Borne fluid. The results obtained are in qualitative agreement with experimental measurements on liquid crystal systems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...