Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (2)
  • 1990-1994  (2)
Source
  • Articles: DFG German National Licenses  (2)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant breeding 104 (1990), S. 0 
    ISSN: 1439-0523
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Anther culture in the breeding process of winter wheat. III. Ability of winter wheat F1 populations with the two heterozygous 1AL–IAS/1AL–IRS and 1BL–1BS/1BL–IRS chromosome pairsApplication of anther culture to four F1 hybrids between the IBL–IRS (‘Amigo’) and several 1BL–IRS wheat-rye translocation forms yielded 129 green pollen plants in an average embryo induction frequency of 17.6 %. A total of 2632 anthers was inoculated. 25 % and 42 % of the regenerated plants were haploid and spontaneously doubled haploid, and 33 % had abnormal chromosomal structure.After chromosome doubling treatment 87% of all pollen plants set seeds. By means of multiple peroxidases and Giemsa C-banding patterns, the anther culture progeny could be further classified into 16 plants without the short arm of IR-chromosome of rye, 21 IAL–IRS and 50 1BL–IRS translocation lines and into 16 IAL–IRS, IBL–IRS double translocation lines according to the four possible characteristic types of F2 gametes of the tested F1 hybrids. Advantages of the haploid technique for the selection of desirable traits and the meaning of the IRS genes in wheat are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Gliadin ; HMW glutenin ; SDS electrophoresis ; Biochemical marker ; 1A-1R, 1B–1R wheatrye double translocation ; Doubled haploids ; Triticum aestivum L.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Eighteen available doubled haploid wheat lines with a cytologically proven 1A–1R, 1B–1R double translocation, which where derived via anther culture from four crosses of the 1A–1R wheat-rye translocation cv “Amigo” with several 1B–1R wheat-rye translocation forms, were subjected to electrophoretic seed protein analysis. Besides, the five parents used in the crosses and some other wheat cultivars and doubled haploid lines (19 with a 1B–1R single translocation, 10 with a 1A–1R translocation and 7 without any 1R translocation) were also included in the investigation. It was found that the gliadin patterns visualized after SDS polyacrylamide gel electrophoresis of alcohol-soluble seed protein extracts can differentiate not only 1B–1R and 1A–1R translocation forms from wheats without any 1R-translocation chromosome, but also 1B–1R and 1A–1R wheats from each other. Moreover, 1A–1R, 1B–1R double translocation lines can be distinguished as well due to characteristic differences revealed between 1A–1R and 1B–1R translocation forms. Thus, all of tested dh1- and dh2-grains of the double translocation lines showed the expected doublet: the 1A–1R translocation (“Amigo”)-typical rye band and the 1B–1R translocation (“Kawkas”)-typical rye band. Consequently, gliadin patterns estimated after SDS electrophoresis may be used as markers for the fast detection of the desired 1A–1R, 1B–1R double translocation forms among 1A–1R single translocation lines, 1B–1R single translocation lines and lines without any 1R-translocation in the progenies of appropriate crosses. Furthermore, by means of gliadin tests on the dh2-generation the excellent stability of the double translocation 1A–1R, 1B–1R during more than one propagation phase has been proven. Estimations of high-molecular weight (HMW) glutenin subunits coded by 1A and 1B chromosomes are compatible with the double translocation constitution. A few deviating results can be explained by crossing-over events. Seed protein analysis revealed that it is possible to produce 1A–1R, 1B–1R double translocation lines with good glutenin compositions provided that adequate favourable parents are used.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...