Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (20)
  • 1980-1984  (5)
  • 1975-1979  (1)
  • 1965-1969  (14)
Source
  • Articles: DFG German National Licenses  (20)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 4 (1968), S. 142-164 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The observational set-up for a detailed study of the velocity, intensity and magnetic-field fine structure in and around a sunspot is described. On highly resolved spectra we detected in the vicinity of a sunspot a large number of points with strong magnetic fields (magnetic knots). The magnetic field in these knots causes a striking decrease of the line depth (or a ‘line gap’ after Sheeley, 1967). The properties of the magnetic knots are: (1) magnetic fields up to 1400 gauss; (2) diameter ≈ 1100 km; (3) coincidence with dark intergranular spaces; (4) generally downward material motion; (5) lifetime〉30min; (6) estimated total number around an unipolar spot ⩾ 2000; (7) combined magnetic flux comparable to the sunspot flux; (8) coincidence with Ca+ plages. For the smallest sunspots (pores) we obtained magnetic fields 〉1500 gauss. Hence a magnetic field of about 1400–1500 gauss appears to be a rather critical level for pore and spot formation. We found a large number of small areas producing line gaps without measurable magnetic field. These ‘non-magnetic gap-regions’ coincide with bright continuum structures. Some aspects arising from the occurrence of hundreds of magnetic knots in an active region are discussed in the last section.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission spacecraft is described, including the experiment objectives, system design, performance, and modes of operation. The instrument operates in the wavelength range 1150–3600 Å with better than 2 arc sec spatial resolution, raster range 256 × 256 arc sec2, and 20 mÅ spectral resolution in second order. Observations can be made with specific sets of 4 lines simultaneously, or with both sides of 2 lines simultaneously for velocity and polarization. A rotatable retarder can be inserted into the spectrometer beam for measurement of Zeeman splitting and linear polarization in the transition region and chromosphere.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission spacecraft has observed for the first time the longitudinal component of the magnetic field by means of the Zeeman effect in the transition region above a sunspot. The data presented here were obtained on three days in one sunspot, have spatial resolutions of 10 arc sec and 3 arc sec, and yield maximum field strengths greater than 1000 G above the umbrae in the spot. The method of analysis, including a line-width calibration feature used during some of the observations, is described in some detail in an appendix; the line width is required for the determination of the longitudinal magnetic field from the observed circular polarization. The transition region data for one day are compared with photospheric magnetograms from the Marshall Space Flight Center. Vertical gradients of the magnetic field are computed from the two sets of data; the maximum gradients of 0.41 to 0.62 G km−1 occur above the umbra and agree with or are smaller than values observed previously in the photosphere and low chromosphere.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract In this paper, we describe results of a Solar Maximum Mission (SMM) guest investigation to determine vertical gradients of sunspot magnetic fields for the first time from coordinated observations of photospheric and transition-region fields. Both the photospheric vector field of a sunspot, derived from observations using the NASA Marshall Space Flight Center vector magnetograph, and the line-of-sight component in the transition region, obtained from the SMM Ultraviolet Spectrometer and Polarimeter instrument, are described. From these data, vertical gradients of the line-of-sight magnetic field component are calculated using three methods. (1) The vertical gradient is derived directly from the observations assuming a height difference of 2000 km between the photosphere and transition region. (2) Using the observed transverse photospheric field, the initial gradient (ΔB z/Δz) z = 0 , is calculated from the condition ▽ · B = 0. (3) Using the photospheric line-of-sight component as the boundary condition in a potential-field calculation, the extrapolated potential field at different heights is compared to the observed transition-region field; from these comparisons, an average height difference is derived and used to calculate the average vertical gradient (Δ B z/Δz). Comparisons of gradients derived from these three methods show consistent results for methods (2) and (3). Deviations of the calculated potential transverse field at z = 0 from the observed transverse component are investigated to assess the validity of gradient calculations using method (3). Since the field is shown to be very close to a potential distribution, we conclude that the vertical gradient of B z is lower than values from previous studies and the transition-region field occurs at a height of ≈ 4000–6000 km above the photosphere.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 9 (1969), S. 35-38 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The paper describes a numerical experiment in which the effect of an assumed velocity distribution in the solar atmosphere on the intensity difference between a blue- and a red-wing filter-gram is derived. This results in the effective optical depth at which the velocity is measured. It is shown that this τeff strongly depends on the assumed velocity distribution.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 4 (1968), S. 165-167 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 4 (1968), S. 303-314 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A time sequence of high-resolution sunspot photographs, exposed almost simultaneously in two continuum wavelengths (4680 Å and 6400 Å), was used to study some properties of umbral fine structures (‘umbral dots’). The lifetime of the umbral dots is found to be 1500 sec. Photometry of some bright dots leads to an observed intensity excess of 0.129 I phot and 0.134 I phot in the blue and red respectively. The observed mean diameter of the dots is found to be 420 km. These values still include the action of image blurring. From the color index the true intensity and diameter of the dots are estimated. It appears that the umbral dots are in reality of photospheric brightness having true diameters of 150–200 km. The spatial distribution of the dots in sunspot umbrae is discussed. Some peculiarities in recent sunspot magnetic-field observations may be explained by magnetic inhomogeneities associated with umbral dots.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract This report summarizes the proceedings of a meeting held on 17–20 September 1974, at Stanford University. The purpose was to explore plasma physics problems which arise in the study of solar physics. Sessions were concerned with specific questions including the following: Is the solar plasma thermal or non-thermal? What spectroscopic data are required? What types of magnetic field structures exist? Do MHD instabilities occur? Do resistive or non-MHD instabilities occur? What mechanisms of particle acceleration have been proposed? What information do we have concerning shock waves? Very few questions were answered categorically but, for each question, there was discussion concerning the observational evidence, theoretical analyses, and existing or potential laboratory and numerical experiments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 9 (1969), S. 372-386 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract For the case of pure absorption lines (LTE) a method is described which enables the general computation of Zeeman-split line profiles. The magnetic field vector, the Doppler shift and the line absorption coefficient is permitted to vary arbitrarily with optical depth. Elliptical birefringence (e.g., Faraday rotation) of the solar atmosphere is taken into account. Some numerical examples are given and some interesting behaviors of the line profiles are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 6 (1969), S. 480-481 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...