Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (2)
  • 1980-1984  (1)
  • 1975-1979  (1)
  • Pollen tube  (2)
Source
  • Articles: DFG German National Licenses  (2)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 133 (1976), S. 35-40 
    ISSN: 1432-2048
    Keywords: Pollen tube ; Style ; Callose ; Petunia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In Petunia pollen tubes growing in the style there appear to be two ways of callose deposition. The first one is callose deposition outside the plasma membrane as a distinct layer closely appressed to the cell wall. The second one is callose deposition within the cytoplasm as distinct callose grains, leading to the formation of callose plugs. This second way is accompanied by a characteristic ultrastructure of the cytoplasm, namely strong electron-density of the plasma matrix, partial absence of the plasma membrane and the absence of plastids and dictyosomes. For both ways of callose deposition a mechanism is proposed and the function of callose plugs is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Lycopersicum ; Pollen activation ; Pollen tube ; Self-incompatibility
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract No differences have been observed “in vivo” between Lycopersicum peruvianum compatible and incompatible pollen during activation and pollen tube emission and organization, that is until 4 h and 30 min after pollination. During pollen activation the main events are the setting free of rough endoplasmic reticulum (RER) cisterns which were “stacked” in the mature pollen, the increase in the number of polysomes, and a great activity of the dictyosomes. Immediately after germination of the vegetative nucleus and the generative cell move into the tube, the generative cell diviting to form the male gametes; the tube then becomes organized in four zones. This series of changes is similar to what has already been observed “in vitro” except that in vitro the generative cell remains undivided and the whole process from seeding to tube organization takes 3 h instead of 4 h and 30 min after pollination, as it does in vivo. Our findings are compatible with the main models of the tube inhibition mechanism proposed till now.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...