Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (2)
  • 1980-1984  (2)
  • Cortical field potential  (2)
  • Chemistry
Source
  • Articles: DFG German National Licenses  (2)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 55 (1984), S. 26-32 
    ISSN: 1432-1106
    Keywords: Cortical field potential ; Visually initiated movement ; Motor learning ; Monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary A monkey was trained to lift a lever by wrist extension in response to a light stimulus. During the learning process of the task over several months, field potentials related not only to the task performance but also to substitution and stimulation experiments were recorded with chronically implanted electrodes on the surface and at a depth of 2.5–3.0 mm in the prefrontal, premotor, motor and prestriate cortices. In the substitution experiment, an examiner lifted a lever for the monkey so that it was watching the light and rewarded without the hand movement. In the stimulation experiment, the same light stimulus was simply delivered to the monkey. In a naive monkey which lifted the lever independently of the stimulus, stimulus-locked potentials were evoked by the task experiment in those cortices except the motor cortex, but none was elicited by the substitution or stimulation experiment. In a welltrained monkey, the substitution and stimulation experiments induced almost the same potentials as those prior to the task movement in respective cortices except the motor cortex, in which the component of cerebellar-induced premovement potential was not observed during the substitution and stimulation experiments. At an intermediate stage of learning, the situation was intermediate between the naive and well-trained stages and most premovement potentials except those in the motor cortex were elicited by the substitution experiment in reduced sizes, but nothing by the stimulation experiment. The present study suggests that the neuronal circuits for the operantly conditioned movement are functionally organized and gradually consolidated in the learning process, and that the consolidation is made earlier for the circuit involving association and premotor cortices than the circuit including the motor cortex in the process. The circuit to the motor cortex via the cerebro-cerebellar interconnection is recruited only on the execution of movement.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 48 (1982), S. 429-437 
    ISSN: 1432-1106
    Keywords: Cortical field potential ; Visually initiated movement ; Motor learning ; Monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Field potentials on the surface and at 2.5–3.0 mm depth in the cerebral cortex were recorded in various areas with chronically implanted electrodes and the potentials which preceded hand movements in response to a light stimulus were observed during the process of learning the skilled conditioned movement. A naive monkey had to lift a lever by wrist extension within duration of the light stimulus lasting for 900, 700 or 510 ms depending on the stage of the learning process. In addition to some responses in the striate gyrus, significant short-latency responses to the light stimulus appeared bilaterally in certain areas of the prefrontal and prestriate cortices at an early stage of learning in which the monkey still lifted the lever randomly, and they became gradually larger as the monkey was trained further. Short-latency responses were also often noted in the bilateral premotor cortices during an early stage of learning. When the monkey started to respond to the stimulus by the appropriate movement, early surface-positive (s-P), depth-negative (d-N) premovement potentials appeared in the forelimb motor cortex, and the responses in the premotor cortex increased in size. As the movement became faster and more skillful, late s-N, d-P premovement potentials, that are known to be mediated by the neocerebellum and superficial thalamo-cortical projections, emerged after the early s-P, d-N potentials and became more marked, larger and steeper in the forelimb motor cortex contralateral to the moving hand. All the premovement potentials in the different cortical areas thus developed into steady and constant states and remained so for many months thus maintaining their established patterns. Such successive appearances of premovement field potentials in various cortical areas were related to learning processes of the movement and the implication of these findings was discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...