Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (7)
  • Photosynthesis  (3)
  • Photosystem II  (3)
  • (benzamidooxy)acetic acid  (1)
Source
  • Articles: DFG German National Licenses  (7)
Material
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 140 (1978), S. 1-6 
    ISSN: 1432-2048
    Keywords: Leaf temperature ; Oxygen (photosynthesis) ; Photosynthesis ; Temperature (photosynthesis) ; Triticum ; Zea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of leaf temperature, O2 and calculated O2/CO2 solubility ratio in the leaf on the quantum yield of photosynthesis was studied for the C4 species, Zea mays L., and the C3 species, Triticum aestivum L. Over a range of leaf temperatures of 16 to 35° C, the quantum yield of Z. mays was relatively constant and was similar under 1.5 and 21% O2, being ca. 0.059 mol CO2 mol-1 quanta absorbed. Under 1.5% O2 and atmospheric levels of CO2, the quantum yield of T. aestivum was relatively constant (0.083 mol CO2 mol-1 quanta absorbed) at leaf temperatures from 15 to 35° C. Atmospheric levels of O2 (21%) reduced the quantum yield of photosynthesis in T. aestivum and as leaf temperature increased, the quantum yield decreased from 0.062 at 15°C to 0.046 mol CO2 mol-1 quanta absorbed at 35°C. Increasing temperature decreases the solubility of CO2 relatively more than the solubility of O2, resulting in an increased solubility ratio of O2/CO2. Experimentally manipulating the atmospheric levels of O2 or CO2 to maintain a near-constant solubility ratio of O2/CO2 at varying leaf temperatures largely prevented the temperature-dependent decrease in quantum yield in t. aestivum. Thus, the decrease in quantum yield with increasing leaf temperature in C3 species may be largely caused by a temperaturedependent change in the solubility ratio of O2/CO2.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Crassulacean acid metabolism (CAM) ; Oxygen evolution (photosynthesis) ; Photosynthesis ; Sedum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A technique has been developed for the enzymatic isolation of leaf cells from the Crassulacean acid-metabolism plant Sedum telephium. The cells exhibited high activity in both 14CO2 incorporation (30–70 μmol CO2 mg-1 chlorophyll h-1) and O2 evolution in the presence of bicarbonate (60–110 μmol O2 mg-1 chlorophyll h-1). Half-maximum saturation of 14CO2 incorporation occurred at a bicarbonate concentration of ca. 2 mM (20 μM CO2) at pH 8.4 and 30°C. Two types of light-dependent O2 evolution are reported: O2 evolution in the absence of exogenously supplied bicarbonate (endogenous O2 evolution), and bicarbonate-stimulated O2 evolution. Oxygen evolution in the presence of approximately ambient concentrations of CO2 appeared to be a combination of the endogenous O2 evolution and O2 evolution from fixation of the exogenously supplied CO2.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2048
    Keywords: Chlorophyll fluorescence ; Flaveria ; Oxygen ; Photosynthesis ; Photorespiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two major indicators were used to access the degree of photorespiration in various photosynthetic types of Flaveria species (C3, C3-C4, C4-like, and C4): the O2 inhibition of photosynthesis measured above the O2 partial pressure which gives a maximum rate, and O2- and light-dependent whole-chain electron flow measured at the CO2 compensation point (Γ). The optimum level of O2 for maximum photosynthetic rates under atmospheric levels of CO2 (34 Pa) was lower in C3 and C3-C4 species (ca. 2 kPa) than in C4-like and C4 species (ca. 9 kPa). Increasing O2 partial pressures from the optimum for photosynthesis up to normal atmospheric levels (ca. 20 kPa) caused an inhibition of photosynthesis which was more severe under lower CO2. This inhibition was calculated as the O2 inhibition index (ΘA, the percentage inhibition of photosynthesis per kPa increase in O2). From measurements of 18 Flaveria species at atmospheric CO2, the ΘA values decreased from C3 (1.9–2.1) to C3-C4 (1.2–1.6), C4-like (0.6–0.8) and C4 species (0.3–0.4), indicating a progressive decrease in apparent photorespiration in this series. With increasing irradiance at Γ under atmospheric levels of O2, and increasing O2 partial pressure at 300 μmol quanta·m−2·s−1, there was a similar increase in the rate of O2 evolution associated with whole-chain electron flow (Jo 2, calculated from chlorophyll fluorescence analysis) in the C3 and C3-C4 species compared to a much lower rate in the C4-like and C4 species. The results indicate that there is substantial O2-dependent electron flow in C3 and C3-C4 species, reflecting a high level of photorespiration compared to that in C4-like and C4 species. Consistent with these results, there was a significant decrease in Γ from C3 (6–6.2 Pa) to C3-C4 (1.0–3.0 Pa), to C4-like and C4 species (0.3–0.8 Pa), indicating a progressive decrease in apparent photorespiration. However, C3 and C3-C4 species examined had high intrinsic levels of photorespiration with the latter maintaining low apparent rates of photorespiration and lower Γ values, primarily by refixing photorespired CO2. The C4-like and C4 Flaveria species had low, but measurable, levels of photorespiration via selective localization of ribulose-1,5-bisphosphate carboxylase in bundle sheath cells and operation of a CO2 pump via the C4 pathway.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 3 (1982), S. 293-305 
    ISSN: 1573-5079
    Keywords: aspartate and alanine aminotransferases ; (benzamidooxy)acetic acid ; C4 photosynthesis ; herbicide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract (Benzamidooxy)acetic acid (common name benzadox) which has herbicidal properties was evaluated as a potential inhibitor of photosynthesis in C4 plants. Among enzymes of the C4 pathway, it was a relatively strong inhibitor of alanine aminotransferase in in vitro experiments at concentrations of 5mM. In benzadox treated leaves of Panicum miliaceum, a NAD-malic enzyme type C4 species, there was strong inhibition of both alanine and aspartate aminotransferase and of photosynthetic O2 evolution within one hour. Consistent with the inhibition of these enzymes of the C4 cycle, the pool sizes of metabolites of the cycle was altered: the aspartate level was increased two fold, while the levels of other metabolites such as pyruvate, alanine, oxalacetate and malate were decreased. Kinetic studies with partially purified alanine aminotransferase showed that benzadox is a competitive inhibitor with respect to alanine and a noncompetitive inhibitor with respect to 2-oxoglutarate. Comparisons between the structures and inhibitory actions of benzadox and (aminooxy)acetic acid, the latter a potent inhibitor of alanine and aspartate aminotransferases, suggest that in vivo, benzadox may exert its effect through metabolism to (aminooxy)acetic acid.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 37 (1993), S. 89-102 
    ISSN: 1573-5079
    Keywords: C4 photosynthesis ; chlorophyll fluorescence ; CO2 assimilation ; maize ; Photosystem II ; quantum yield
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Analysis is made of the energetics of CO2 fixation, the photochemical quantum requirement per CO2 fixed, and sinks for utilising reductive power in the C4 plant maize. CO2 assimilation is the primary sink for energy derived from photochemistry, whereas photorespiration and nitrogen assimilation are relatively small sinks, particularly in developed leaves. Measurement of O2 exchange by mass spectrometry and CO2 exchange by infrared gas analysis under varying levels of CO2 indicate that there is a very close relationship between the true rate of O2 evolution from PS II and the net rate of CO2 fixation. Consideration is given to measurements of the quantum yields of PS II (φ PS II) from fluorescence analysis and of CO2 assimilation ( $$\phi _{CO_2 } $$ ) in maize over a wide range of conditions. The $${{\phi _{PSII} } \mathord{\left/ {\vphantom {{\phi _{PSII} } {\phi _{CO_2 } }}} \right. \kern-\nulldelimiterspace} {\phi _{CO_2 } }}$$ ratio was found to remain reasonably constant (ca. 12) over a range of physiological conditions in developed leaves, with varying temperature, CO2 concentrations, light intensities (from 5% to 100% of full sunlight), and following photoinhibition under high light and low temperature. A simple model for predicting CO2 assimilation from fluorescence parameters is presented and evaluated. It is concluded that under a wide range of conditions fluorescence parameters can be used to predict accurately and rapidly CO2 assimilation rates in maize.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5079
    Keywords: C4 photosynthesis ; PEP carboxylase mutants ; Photosystem II ; Rubisco transgenic plants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The CO2 dependence of rates of CO2 fixation (A) and photochemistry of PS II at 5, 15 and 30% O2 were analyzed in the C4 plant Amaranthus edulis having a C4 cycle deficiency [phosphoenolpyruvate carboxylase (PEPC) mutants], and in the C4 plant Flaveria bidentis having a C3 cycle deficiency [Rubisco small subunit antisense (αSSU)]. In the wild type (WT) A. edulis and its heterozygous mutant having less than 50% WT PEPC activity there was a similar dependence of A and PS II photochemistry on varying CO2, although the CO2 saturated rates were 25% lower in heterozygous plants. The homozygous plants having less than 2% PEPC of the WT had significant levels of photorespiration at ambient levels of CO2 and required about 30 times ambient levels for maximum rates of A. Despite variation in the capacity of the C4 cycle, more than 91% of PS II activity was linearly associated with A under varying CO2 at 5, 15 and 30% O2. However, the WT plant had a higher PS II activity per CO2 fixed under saturating CO2 than the homozygous mutant, which is suggested to be due to elimination of the C4 cycle and its associated requirement for ATP from a Mehler reaction. In the αSSU F. bidentis plants, a decreased rate of A (35%) and PS II activity (33%) accompanied a decrease in Rubisco capacity. There was some increase in alternative electron sinks at high CO2 when the C3 cycle was constrained, which may be due to increased flux through the C4 cycle via an ATP generating Mehler reaction. Nevertheless, even with constraints on the function of the C4 or C3 cycle by genetic modifications, analyses of CO2 response curves under varying levels of O2 indicate that CO2 assimilation is the main determinant of PS II activity in C4 plants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 35 (1993), S. 265-274 
    ISSN: 1573-5079
    Keywords: C3 plants ; C4 plants ; light ; Photosystem II ; quantum yield ; fluorescence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The light dependence of quantum yields of Photosystem II (ΦII) and of CO2 fixation were determined in C3 and C4 plants under atmospheric conditions where photorespiration was minimal. Calculations were made of the apparent quantum yield for CO2 fixation by dividing the measured rate of photosynthesis by the absorbed light [A/I=ΦCO2 and of the true quantum yield by dividing the estimated true rate of photosynthesis by absorbed light [(A+Rl)/Ia=ΦCO2·], where RL is the rate of respiration in the light. The dependence of the ΦII/ΦCO2 and ΦII/ΦCO2 * ratios on light intensity was then evaluated. In both C3 and C4 plants there was little change in the ratio of ΦII/ΦCO2 at light intensities equivalent to 10–100% of full sunlight, whereas there was a dramatic increase in the ratio at lower light intensities. Changes in the ratio of ΦII/ΦCO2 can occur because respiratory losses are not accounted for, due to changes in the partitioning of energy between photosystems or changes in the relationship between PS II activity and CO2 fixation. The apparent decrease in efficiency of utilization of energy derived from PS II for CO2 fixation under low light intensity may be due to respiratory loss of CO2. Using dark respiration as an estimate of RL, the calculated ΦII/ΦCO2 * ratio was nearly constant from full sunlight down to approx 5% of full sunlight, which suggests a strong linkage between the true rate of CO2 fixation and PS II activity under varying light intensity. Measurements of photosynthesis rates and ΦII were made by illuminating upper versus lower leaf surfaces of representative C3 and C4 monocots and dicots. With the monocots, the rate of photosynthesis and the ratio of ΦII/ΦCO2 exhibited a very similar patterns with leaves illuminated from the adaxial versus the abaxial surface, which may be due to uniformity in anatomy and lack of differences in light acclimation between the two surfaces. With dicots, the abaxial surface had both lower rates of photosynthesis and lower ΦII values than the adaxial surface which may be due to differences in anatomy (spongy versus palisade mesophyll cells) and/or light acclimation between the two surfaces. However, in each species the response of ΦII/ΦCO2 to varying light intensity was similar between the two surfaces, indicating a comparable linkage between PS II activity and CO2 fixation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...