Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical programming 50 (1991), S. 331-342 
    ISSN: 1436-4646
    Keywords: Potential reduction algorithm ; linear complementarity problem ; interior point algorithm ; Karmarkar's algorithm ; path of centers ; central trajectory
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract This paper proposes an interior point algorithm for a positive semi-definite linear complementarity problem: find an (x, y)∈ℝ 2n such thaty=Mx+q, (x,y)⩾0 andx T y=0. The algorithm reduces the potential function $$f(x,y) = (n + \sqrt n )\log x^T y - \sum\limits_{i = 1}^n {\log x_i y_i } $$ by at least 0.2 in each iteration requiring O(n 3) arithmetic operations. If it starts from an interior feasible solution with the potential function value bounded by $$O(\sqrt n L)$$ , it generates, in at most $$O(\sqrt n L)$$ iterations, an approximate solution with the potential function value $$ - O(\sqrt n L)$$ , from which we can compute an exact solution in O(n 3) arithmetic operations. The algorithm is closely related with the central path following algorithm recently given by the authors. We also suggest a unified model for both potential reduction and path following algorithms for positive semi-definite linear complementarity problems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical programming 52 (1991), S. 587-595 
    ISSN: 1436-4646
    Keywords: Linear programming ; linear complementarity problem ; interior point algorithms ; path following algorithms
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract In this paper we propose an O(n 3 L) algorithm which is a modification of the path following algorithm [8] for a linear complementarity problem. The path following algorithm has to take a short step size in each iteration in order to bound the number of overall arithmetic operations by O(n 3 L). In practical computation, we can determine the step size adaptively. Mizuno, Yoshise, and Kikuchi [11] reported that such an adaptive algorithm required about O(L) iterations for some test problems. Here we show that we can use a rank one update technique in the adaptive algorithm so that the number of overall arithmetic operations is theoretically bounded by O(n 3 L).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Applied mathematics & optimization 33 (1996), S. 315-341 
    ISSN: 1432-0606
    Keywords: Linear programming ; Quadratic programming ; Linear complementarity problem ; Infeasible-interior-point algorithm ; Polynomial time ; 90C33 ; 65F05
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract There are many interior-point algorithms for LP (linear programming), QP (quadratic programming), and LCPs (linear complementarity problems). While the algebraic definitions of these problems are different from each other, we show that they are all of the same general form when we define the problems geometrically. We derive some basic properties related to such geometrical (monotone) LCPs and based on these properties, we propose and analyze a simple infeasible-interior-point algorithm for solving geometrical LCPs. The algorithm can solve any instance of the above classes without making any assumptions on the problem. It features global convergence, polynomial-time convergence if there is a solution that is “smaller” than the initial point, and quadratic convergence if there is a strictly complementary solution.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...