Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (3)
  • Opsin immunoreactivity  (2)
  • AChE-positive neurons  (1)
  • Acetylcholinesterase reaction  (1)
Source
  • Articles: DFG German National Licenses  (3)
Material
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 216 (1981), S. 113-130 
    ISSN: 1432-0878
    Keywords: Pineal complex ; AChE-positive neurons ; Plexiform areas ; Photosensory function ; Xenopus laevis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The morphological and physiological properties of the pineal complex of Xenopus laevis were investigated in larval, juvenile and adult animals. In a representative majority of adult X. laevis, the frontal organ does not display signs of degeneration. Fully differentiated frontal organs contain photoreceptors typical of the pineal complex of lower vertebrates. By means of the acetylcholinesterase (AChE)-reaction approximately 30 neurons of two different types were demonstrated in the frontal organ. The frontal-organ nerve is composed of approximately 10 myelinated and 40 unmyelinated nerve fibers. The neuropil areas of the frontal organ are generally similar to the corresponding structures of the intracranial epiphysis. The neuronal apparatus of the epiphysis cerebri of X. laevis consists of (i) photoreceptor cells, (ii) ∼100 AChE-positive neurons, (iii) complex neuropil areas, and (iv) a pineal tract formed by ∼10 myelinated and ∼100 unmyelinated nerve fibers. Some of them exhibit granular inclusions indicating that pinealopetal elements may enter the pineal complex of X. laevis via this pathway. The topography of the pineal tract of X. laevis differs considerably from that in ranid species. The most conspicuous element of the plexiform zones is the ribbon synapse. The basal processes of the photoreceptor cells may be presynaptic elements of simple, tangential, dyad or triad synaptic contacts. Conventional synapses were observed only occasionally. Electrophysiological recordings revealed that the pineal complex of Xenopus laevis is directly sensitive to light. In response to light stimuli, two types of responses, achromatic and chromatic, were recorded from the nerve of the frontal organ. In contrast, the epiphysis exhibited only achromatic units. The opposed color mechanism of the chromatic response showed a maximum sensitivity at approximately 360 nm for the inhibitory and at 520 nm for the excitatory event. The action spectrum of the achromatic response of the epiphysis and the frontal organ peaked between 500 and 520 nm and showed no Purkinje-shift during dark adaptation. The functional significance of these phenomena is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Pineal organ ; Parapineal organ ; Opsin immunoreactivity ; Cyclostome (Lampetra fluviatilis) ; Teleosts (Anguilla anguilla, Salmo gairdneri)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The pineal complex of Lampetra fluviatilis, Anguilla anguilla and Salmo gairdneri was studied by means of the indirect immunohistochemical antiopsin reaction. Opsin-immunoreactive material was demonstrated in the outer segments of the photoreceptor cells in the pineal organ of all three species investigated. In the lamprey, the opsin-positive outer segments were located in the lumen of the pineal vesicle and atrium. In the two teleost species, the immunoreactive outer segments were observed in abundance in the pineal end-vesicle and stalk. These structures were found to accumulate in the prominent initial portion of the pineal stalk of the eel. In the rainbow trout, immunoreactive outer segments occurred in the wide orifice of the pineal recess at the roof of the third ventricle. In addition, outer segments of photoreceptor cells of the parapineal organ (“parapinealocytes”) displayed opsin immunoreactivity. In the lamprey, opsin immunoreactivity was restricted to the central portion of the ventral parapineal retina, while the parapinealocytes in the lateral portions did not bind the antibody. In the two teleosts, immunoreactive outer segments displayed a scattered pattern. These immunocytochemical results provide direct evidence that the photosensitivity of the pineal demonstrated electrophysiologically in lampreys and teleosts (cf. Dodt 1973) is based on an opsin-containing photopigment. The presence of opsin in cells of the parapineal organ strengthens the view that also this organ may be capable of direct light perception. In the lamprey, the exclusive opsin immunoreactivity of a circumscribed group of parapineal cells suggests the existence of two types of parapinealocytes. The significance of opsin-containing photoreceptor outer segments occurring in the most proximal portion of the teleost pineal stalk is discussed, especially with regard to the interpretation of results obtained from pinealectomy experiments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0878
    Keywords: Pineal photoreceptors ; Opsin immunoreactivity ; Pineal neurons ; Acetylcholinesterase reaction ; Parapineal organ ; Teleosts (Phoxinus phoxinus L.)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The pineal complex of the teleost, Phoxinus phoxinus L., was studied light-microscopically by the use of the indirect immunocytochemical antiopsin reaction and the histochemical acetylcholinersterase (AChE) method. Opsin-immunoreactive outer segments of photoreceptor cells were demonstrated in large numbers in all divisions of the pineal end-vesicle and in the pineal stalk. Moreover, they were found in the roof of the third ventricle, adjacent to the orifice of the pineal recess as well as scattered in the parapineal organ. These immunocytochemical observations provide direct evidence of the presence of an opsin associated with a photopigment in the photosensory cells of the pineal and parapineal organs of Phoxinus. By means of the AChE reaction (Karnovsky and Roots 1964) inner segments of pineal photoreceptors, intrinsic nerve cells, several intrapineal bundles of nerve fibers, and a prominent pineal tract were specifically marked. The pineal neurons can be divided into two types: one is located near the pineal lumen, the other near the basal lamina. The latter perikarya bear stained processes directed toward the photoreceptor layer. A rostral aggregation of two types of AChE-positive nerve cells occurs in the ventral wall of the pineal end-vesicle. The main portion of the AChE-positive pineal tract, which lies within the dorsal wall of the pineal stalk, can be followed to the posterior commissure where some of the nerve fibers course laterally. A few AChE-positive pineal nerve fibers run toward the lateral habenular nucleus via the habenular commissure. In the region of the subcommissural organ single AChE-positive neurons accompany the pineal tract. The nerve cells of the parapineal organ exhibit a moderate AChE activity. These findings extend the structural basis for the remarkable light-dependent activity of the pineal organ of Phoxinus phoxinus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...