Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (3)
  • Ouabain  (2)
  • Acetoacetate  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 364 (1976), S. 223-228 
    ISSN: 1432-2013
    Keywords: Renal calcium transport ; Renal calcium permeability ; Sodium dependence ; H+ transport ; Ouabain
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Using the stop flow microperfusion technique with simultaneous capillary perfusion the rate of active Ca2+ reabsorption was evaluated by measuring the static head electrochemical potential difference as well as the permeability of the tubular wall for Ca2+ ions. Under control conditions the active Ca2+ transport was calculated to be 3.35×10−13 mol/cm·s. It declined toward zero if the ambient Na+ was replaced by choline or lithium. Parallel experiments in the golden hamster showed that active Ca2+ transport, vanished completely if active Na+ transport was blocked by ouabain (1 mM). These data indicate that the active Ca2+ reabsorption from the proximal tubule depends on the active reabsorption of Na2+ presumably via a Na+−Ca2+ countertransport at the contraluminal cell membrane. The static head electrochemical potential difference of Ca2+ is the same in late and early proximal tubules. It is also not affected by the presence of acetazolamide (10−4 M) by the absence of bicarbonate or glycodiazine buffer or by the absence or presence of phosphate (2 mM).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 368 (1977), S. 245-252 
    ISSN: 1432-2013
    Keywords: Renal tubule ; H+ ion secretion ; Na+ coupled transport ; Ouabain ; SITS
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The rate of active transport by the proximal renal tubule of amino acid (l-histidine), sugar (α-methyl-d-glycoside), H+ ions (glycodiazine), phosphate and para-aminohippurate was evaluated by measuring the zero net flux concentration difference (Δc) of these substances. In the case of calcium the electrochemical potential differenceΔc +zFci Δϕ/RT) was the criterion employed. The rate of isotonic Na+-absorption (JNa) was measured with the shrinking droplet method. The effect of ouabain on the transport of these substances was tested in the golden hamster and the effect of SITS (4-acetamido-4′isothiocyanatostilbene 2,2′-disulfonic acid) was observed in rats. Ouabain (1 mM) applied peritubularly incompletely inhibited JNa (80%), but in combination with acetazolamide (0.2 mM) the inhibition was almost complete (93%). In addition, ouabain inhibited the sodium coupled (secondary active) transport processes ofl-histidine, α-methyl-d-glycoside, calcium and phosphate by more than 75%. It did not affect H+ (glycodiazine) transport and PAH transport was only slightly affected. When SITS (1 mM) was applied from both sides of the cell it inhibited H+ (glycodiazine) transport by 72% and reduced JNa by 38% when given from only the peritubular cell side. SITS (1 mM), however, had no significant affect on H+ secretion and sodium reabsorption if it was applied from only the luminal side. Furthermore it had no affect on the other transport processes tested, regardless of the cell side to which it was applied. When the HCO 3 − buffer or physically related buffers were omitted from the perfusate the absorption of Na+ was reduced by 66%, phosphate by 44%, andl-histidine by 15%. All the other transport processes tested were not significantly affected. The data are consistent with the hypothesis that the active transport processes of histidine, α-methyl-d-glycoside and phosphate, which are located in the brush border, are driven by a sodium gradient which is abolished by ouabain. This may also apply to the Na+-Ca2+ countertransport located at the contraluminal cell side. The residual Na+ transport remaining in the presence of ouabain is likely to be passively driven by the continuing H+ transport which probably is driven directly by ATP. SITS seems to inhibit the exit step of HCO 3 − from the cell and secondary to that, the luminal H+-Na+ exchange and consequently the Na+ reabsorption. In the absence of HCO 3 − buffer in the perfusates the luminal H+-Na+ exchange seems to be affected and the pattern of inhibition of the other transport processes is almost the same as with SITS. The different effects onP i reabsorption observed under these conditions might be explained by possible variations in intracellular pH.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 395 (1982), S. 220-226 
    ISSN: 1432-2013
    Keywords: Na+-dependent transport ; d-Lactate transport ; Small fatty acids ; 3-Hydroxybutyrate ; Acetoacetate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The 3.5 s efflux ofd-lactate (1 mmol/l) injected in the lumen of the late proximal convolution as well as the zero net flux transtubular concentration difference ofd-lactate, which is a measure of its active transtubular transport rate, were determined. The inhibitory potency of small fatty acids and their analogs added to the perfusate in a concentration of 10 mmol/l on both, the 3.5 s efflux and in most cases also the 45 s transtubular concentration difference ofd-lactate was measured. It was found that 1. small fatty acids from acetate to octanoate inhibit 3.5s efflux ofd-lactate, the largest inhibition being exerted by propionate and butyrate. With increasing chain length the inhibitory potency decreased and disappeared with decanoate. 2. Considering the acetate-, propionate- and butyrate analogs, introduction of an electron attracting group such as Cl, Br, I, CN, SH, N3 on C atom 2 increased the inhibitory potency, compared to the unsubstituted fatty acid. An OH on C2 increased or did not change the inhibition while an OH on C atom 3 reduced or blunted the inhibition. A keto-group, as it is present in glyoxylate prevented inhibition, but pyruvate inhibited to the same extent as lactate, and acetoacetate was even more inhibitory than 3-hydroxybutyrate. Cl substitution on C3 preserved the strong inhibitory potency, while 4-Cl butyrate, was only sparsely inhibitory. A NH 3 + group at any position precludes inhibition. 3. As seen with Cl or OH substituted propionate and butyrate the inhibitory potency increased with decreasingpK a of the compounds. 4. Increasing the chain length by a CH3 as from acetate to propionate, from glycolate to lactate and also from glyoxylate to pyruvate increased the inhibitory potency. 5. When tested against the 3.5 s efflux ofl-lactate, the same inhibitory pattern was seen as withd-lactate. 6. The transport of chloroacetate, glycolate and acetoacetate, which were available in a radio-labeled form of high specific activity, was measured directly in 3.5 s efflux studies. It was Na+-dependent and could be inhibited by 10 mmol/ll-lactate. Glyoxylate, on the other hand, which did not inhibitd-lactate transport, did also not show a Na+-dependent,l-lactate inhibitable efflux from the tubular lumen. The data indicate that a variety of short chain fatty acids and their analogs are transported by the same Na+-dependent transport system in the brush border which transportsl- andd-lactate. The specificity is determined by the molecule size, hydrophobicity of one part of the molecule, the electron attracting abilities of substitutes on C-atom 2 or 3 and the charge distribution on the molecule.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...