Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (11)
  • Biochemistry and Biotechnology  (8)
  • Active Galactic Nuclei-accretion disk-MHD  (1)
  • Flow system  (1)
  • Hordeum vulgaressp. vulgare  (1)
Source
  • Articles: DFG German National Licenses  (11)
Material
Years
Keywords
  • 11
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 21 (1979), S. 417-431 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The concept of solid retention time (SRT) was applied in the trickling-filter process. A rational model of the trickling-filter process employing activated-sludge-process operational parameters was presented. The design equation was developed as follows; 1/SRT = [(S0 - Sn)/X]·(F/V)·Y - kd, where SRT is the sludge retention time, S0 is the influent substrate concentration; Sn is the effluent substrate concentration; X is the total cell mass retained per unit filter volume; V is the total volume of the filter; F is the influent flow rate; Y is the cell yield, and kd is the cell decay rate. A laboratory-scale trickling-filter pilot plant treating synthetic sucrose waste-water was studied to verify the present design equation. The solid retention time was evaluated from the total slime mass (active and inactive) retained and the sludge wasted daily. It was found that the present design equation could be applied for designing the trickling-filter process by the application of SRT employed in the activated sludge process. Also, the SRT could be related to the hydraulic loading and influent substrate concentration for a given filter medium. The variation of SRT by the hydraulic loading at constant organic loading was observed and could be expressed by the mechanistic model. When SRT was maintained more than 12 days, it provided the highest five-day biological oxygen demand (BOD5) removal, minimum sludge production, and lowest sludge volume index (SVI) value. The present model does include both microbial growth kinetic concepts, which can be more practical and meaningful for the design of a trickling filter.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...