Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (5)
  • Conformation  (2)
  • Coronary microcirculation  (2)
  • Amylose extender (ae)  (1)
Source
  • Articles: DFG German National Licenses  (5)
Material
Years
  • 1
    ISSN: 0008-6215
    Keywords: Capsular polysaccharide ; Conformation ; Molecular modelling ; NMR spectroscopy ; Streptococcus pneumoniae
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0008-6215
    Keywords: Conformation ; Molecular dynamics. Streptococcus pneumoniae ; Simulated annealing ; ^1H NMR ; ^1^3C NMR
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2242
    Keywords: Key words Rice ; Molecular mapping ; Grain quality ; Starch branching enzyme (SBE) ; Amylose extender (ae)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The chromosomal position of Starch Branching Enzyme III (SBEIII) was determined via linkage to RFLP markers on an existing molecular map of rice (Oryza sativa L.). A cDNA of 890 bp was generated using specific PCR primers designed from available SBEIII sequence data and used as a probe in Southern analysis. The SBEIII cDNA hybridized to multiple restriction fragments, but these fragments mapped to a single locus on rice chromosome 2, flanked by CDO718 and RG157. The detection of a multiple-copy hybridization pattern suggested the possibility of a tandemly duplicated gene at this locus. The map location of orthologous SBE genes in maize, wheat, and oat were predicted based on previously published genetic studies and comparative maps of the grass family.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Basic research in cardiology 88 (1993), S. 2-10 
    ISSN: 1435-1803
    Keywords: Coronary microcirculation ; coronary microvascular diameters ; endothelial impairment ; myocardial ischemia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary We have recently gained evidence that segmental coronary microvascular diameters, and therefore resistances, are controlled by myogenic and endothelial responses to pressure and flow. Furthermore, intact heart studies are demonstrating that these mechanisms may interact importantly with the metabolic mechanisms primarily governing coronary blood flow. Further studies utilizing measurement of segmental coronary microvascular diameters in isolated microvessels and in the beating heart may elucidate the nature of these interactions. Clinical studies may determine whether reversal of endothelial impairment in the diseased coronary microcirculation contributes to autoregulatory vasodilatation, increases resting myocardial perfusion, and increases the threshold for myocardial ischemia during exercise.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Basic research in cardiology 90 (1995), S. 61-69 
    ISSN: 1435-1803
    Keywords: Coronary microcirculation ; arteriole ; venule ; α-adrenergic responses ; α-adrenergic receptors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Although α-adrenergic activation is known to increase coronary microvascular resistance in vivo, the magnitude of its segmental microvascular consequences is not well understood. Quantification of these effects in vivo is hindered by escape mechanisms that minimize the influences of constrictors, and alterations in flow and pressure, which effect microvascular tone by shear stress-dependent and myogenic mechanisms, respectively. To eliminate these confounding influences, we have studied responses in vitro under conditions with these variables controlled. We evaluated the diameter changes of isolated canine coronary arterioles (110±12 μm, n=35) and venules (98±7 μm, n=9) in response to α-adrenergic activation by norepinephrine (10−10 to 10−4 M) in the presence of β-adrenergic blockade by alprenolol (10−6 M). In contrast to the situation in vivo, α-adrenergic activation did not constrict isolated coronary arterioles, but constricted isolated coronary venules in a dose-dependent manner over a range of 10−10 to 10−4 M (−27 ±3% maximum diameter change). Coronary arteriolar α-adrenergic constriction was not promoted by 1) subthreshold or vasoactive doses of the vasoconstrictors KCl, angiotensin II, U46619, endothelin-1, neuropeptide Y or arginine vasopressin, 2) inhibition of the presynaptic uptake of norepinephrine by imipramine (10−6 M), 3) inhibition of EDRF synthesis by Ng-monomethyl-L-arginine (10−5 M) or 4) inhibition of prostaglandin synthesis by indomethacin (10−5 M). Furthermore, α-adrenergic activation did not modify microvascular dilatation by adenosine (10−9 to 10−4 M) or nitroglycerin (10−9 to 10−4 M), suggesting that α-adrenergic constriction in vivo is not due to attenuation of cAMP or cGMP-dependent mechanisms of coronary dilatation. In contrast to the lack of constriction in coronary arterioles, canine skeletal muscle arterioles exhibited significant α-adrenergic constriction (−80±4%), maximum diameter change). The coronary venular α-adrenergic constriction was significantly inhibited by both the α1-and α2-adrenergic receptor antagonists, prazosin (10−8 M) and rauwolscine (10−7 M), indicating a mixed population of α1-and α2-adrenergic receptors. These results suggest that coronary arterioles, but not venules, lose α-adrenergic responsiveness during isolation and cannulation, or that the primary coronary microvascular response to α-adrenergic activation is venular constriction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...