Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (8)
  • Desipramine  (4)
  • Anaesthetized rabbit  (3)
  • Rabbit heart  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 334 (1986), S. 397-402 
    ISSN: 1432-1912
    Keywords: Neuronal noradrenaline carrier ; Inhibition of transport-Na+-dependence ; Desipramine ; Cocaine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Vasa deferentia obtained from reserpine-pretreated rats were incubated (monoamine oxidase and catechol-O-methyltransferase inhibited) in media containing various concentrations of3H-(−)noradrenaline and Na+ and initial rates of the neuronal uptake of3H-noradrenaline measured both in the absence and presence of uptake inhibitors after 1 min of incubation. 2. When rates of uptake were determined at various3H-noradrenaline (1.0–12.2 μmol/l) and two fixed Na+ concentrations (25 and 140 mmol/l), the inhibition of uptake produced by (+)amphetamine, (−)metaraminol, desipramine, nomifensine and cocaine was competitive with respect to3H-noradrenaline at both Na+ concentrations. While theK i for (+)amphetamine, (−)metaraminol desipramine and nomifensine increased when the Na+ concentration was lowered, that for cocaine decreased. 3. When the Na+ concentration was varied (10–140 mmol/l) and the3H-noradrenaline concentration held constant (1.2 μmol/l), (+)amphetamine, (−)metaraminol, nomifensine and desipramine acted as mixed-type inhibitors with respect to Na+, and the inhibition of uptake produced by these drugs was the more pronounced, the higher the Na+ concentration. On the other hand, cocaine was competitive with Na+ and the inhibition produced by this drug was the more pronounced, the lower the Na+ concentration. 4. It is concluded that the inhibitors of neuronal uptake tested here act in dependence on the external Na+ concentration. Desipramine and nomifensine resemble alternative amine substrates in being more potent at high than at low Na+ concentrations. On the other hand cocaine is more potent at low than at high Na+ concentrations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 339 (1989), S. 65-70 
    ISSN: 1432-1912
    Keywords: Cl−-dependence ; Neuronal uptake ; Inhibition of neuronal uptake ; Desipramine ; Cocaine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary (1) Vasa deferentia obtained from reserpine-pretreated rats were exposed to 0.15 μmol 1−1 3H-(−)noradrenaline (with monoamine oxidase and catechol-O-methyltransferase being inhibited) and initial rates of the neuronal 3H-noradrenaline uptake as well as IC50 values for inhibition of uptake by desipramine, cocaine or (−)metaraminol determined at various external Cl− concentrations (0–145 mmol 1−1) and a fixed high Na+ concentration (145 mmoll−1). (2) When the Cl− concentration in the medium was decreased neuronal uptake fell. As far as Cl− concentrations ranging from 10 to 145 mmol 1−1 are concerned, the dependence of uptake on Cl− obeyed Michaelis-Menten kinetics with an apparent K m and V max of 6.2 mmol 1−1 and 116 pmol g−1 min−1, respectively. At Cl− concentrations below 10 mmol l−1, uptake was higher than expected from the values of K m and V max, and even in the nominal absence of Cl− from the medium a remainder of neuronal uptake was still detectable. Evidence is presented to show that, on incubation at Cl− concentrations below 10 mmol l−1, intracelluar Cl− leaks out, so that the actual Cl− concentrations in the extracellular fluid are probably higher than in the medium. (3) The potencies of desipramine and cocaine for inhibition of neuronal uptake were markedly dependent on the Cl− concentration in the medium, but the type of Cl− dependence differed. While the IC50 for desipramine decreased, that for cocaine increased with increasing Cl− concentration (2–145 mmol l−1). The value of IC50 for cocaine and that of 1/IC50 for desipramine approached saturation (with an apparent Hill coefficient of about unity) when plotted against the Cl− concentration; half-maximum values were observed at Cl− concentrations of 9 and 24 mmol l−1, respectively. (4) (−)Metaraminol (an alternative substrate of the noradrenaline carrier) remained equally potent in inhibiting neuronal uptake when the Cl− concentration was decreased from 145 to 2 mmol l−1. However, when Cl− was omitted from the medium, the IC50 for (−)metaraminol increased. Hence, the C−-dependence of the potency of (−)metaraminol appears to be restricted to very low extracellular Cl− concentrations. (5) It is concluded that not only the neuronal uptake process itself, but also its inhibition by desipramine and cocaine are highly Cl−-dependent. Since desipramine and cocaine differ with respect to the type of Cl−-dependence of their inhibitory potency, they are likely to act by combining with distinctly different states of the noradrenaline carrier. It is suggested that desipramine interacts with the carrier loaded with Cl− while cocaine is capable of interacting with its Cl−-free state.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 344 (1991), S. 720-727 
    ISSN: 1432-1912
    Keywords: Nitric oxide (EDRF) ; l-NG-Monomethyl-arginine ; Noradrenaline release ; Adrenaline release ; Anaesthetized rabbit
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary This study in the anaesthetized rabbit aimed at determining the role of nitric oxide (NO), the putative endothelium-derived relaxing factor, in the regulation of haemodynamics and the release into plasma of noradrenaline and adrenaline. Specific inhibition of NO formation was achieved by i.v. bolus injection of l-NG-monomethyl-arginine (l-NMMA; 3–100 mg kg−1). Phenylephrine was infused i.v. at constant rates (2.5–20 μg kg−1 min−1) in order to assess baroreflex-mediated changes in release due to direct peripheral vasoconstriction. Rates of noradrenaline and adrenaline release into plasma were determined by the radio-tracer technique. l-NMMA, but not d-NMMA, dose-dependently increased mean arterial pressure and total peripheral vasular resistance, whereas both heart rate and cardiac output decreased concomitantly. The corresponding ED50 values for l-NMMA ranged from 11.2 to 18.5 mg kg−1. Inhibition of NO formation by l-NMMA as well as phenylephrine infusion caused decreases in the plasma clearance of noradrenaline and adrenaline which were correlated with the drug-induced decreases in cardiac output. Both l-NMMA and phenylephrine reduced the rate of noradrenaline release into plasma as they increased total peripheral resistance. Moreover, the curvilinear relationship between these two parameters obtained for l-NMMA was virtually identical to that produced by phenylephrine, indicating that the reduction in noradrenaline release by l-NMMA is mediated solely by the baroreflex. From the l-NMMA-induced maximum inhibition of noradrenaline release, it is concluded that the counter-regulation against peripheral vasodilation by NO accounts for 69% of basal noradrenaline release. The baroreflex-sensitive component of noradrenaline release, as determined by the maximum inhibition of release induced by phenylephrine, amounted to 83% of basal release. l-NMMA also reduced the release into plasma of adrenaline; the maximum inhibition of release was 52%. However, when related to total peripheral resistance, this inhibition of adrenaline release was more pronounced than that induced by phenylephrine, suggesting that the formation of endogenous NO facilitates the release of adrenaline.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 342 (1990), S. 160-170 
    ISSN: 1432-1912
    Keywords: Rat vas deferens ; Heterogeneous labelling ; 3H-noradrenaline ; Desipramine ; Inhibition of vesicular uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary After loading of the incubated rat vas deferens with 0.2 μmol/l 3H-noradrenaline (followed by 100 min of wash-out with amine-free solution), the efflux of endogenous and exogenous compounds was determined by HPLC with electrochemical detection and by column chromatography with scintillation counting. Two different types of heterogeneity of labelling were found. The first one is due to the preferential labelling of varicosities close to the surface of the tissue, the second one to the preferential labelling of vesicles close to the surface of loaded varicosities. As diffusion distances within the tissue and within varicosities are then longer for endogenous than for exogenous amine and metabolites, the composition of spontaneous efflux of exogenous compounds differed from that for endogenous compounds. Because of preferential neuronal and vesicular re-uptake of endogenous noradrenaline, the percentage contribution by noradrenaline to overall efflux was: endogenous 〈 exogenous. While 3H-DOPEG was the predominant exogenous metabolite, DOPEG and MOPEG equally contributed to the “endogenous” efflux. Desipramine abolished the consequences of the first heterogeneity of labelling, i.e., it increased the efflux more for endogenous than for exogenous noradrenaline; moreover it decreased the efflux of 3H-DOPEG, but increased that of 3H-MOPEG. The reserpine-like compound Ro 41284, on the other hand, abolished the consequences of the second type of heterogeneity; it reduced the specific activity of “total efflux” (i.e., of the sum of noradrenaline + DOPEG + MOPEG) to the specific activity of the tissue noradrenaline. The degree of heterogeneity of labelling was reduced after inhibition of monoamine oxidase and also when the tissues were loaded with 2 or 20 μmol/l 3H-noradrenaline. It is proposed that the various “compartments” and “pools” of noradrenaline described in the literature reflect the two heterogeneities described here.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 302 (1978), S. 275-283 
    ISSN: 1432-1912
    Keywords: Rate of perfusion ; Neuronal uptake ; Accessibility of neuronal uptake sites ; Perfusion pressure ; Rabbit heart
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Rabbit hearts (with monoamine oxidase and catechol-O-methyl transferase inhibited) were obtained from reserpine-pretreated animals. They were perfused at rates ranging from 1.3–11.3 ml·g−1·min−1 with 0.1 mM 14C-sorbitol and various concentrations of 3H-(−)noradrenaline (NA). From measurements of the arterio-venous concentration difference of 3H and 14C activity the removal of NA and sorbitol from the perfusion fluid was followed for 2–3 min at intervals of 5 s. The uptake of NA into intracellular spaces of the heart (known to be over-whelmingly into sympathetic nerve terminals) was obtained by subtracting the removal of sorbitol from that of NA. If was cumulated and plotted against time. 2. The progress curves of NA uptake were sigmoid in shape: following a lag period, uptake proceeded at first at a constant initial rate and from then on at gradually decreasing rates. Irrespective of the NA concentration used, the lag period became shorter and the initial rate of uptake increased whenever the rate of perfusion was increased. Furthermore, at high rates of perfusion the initial rate was maintained for a shorter time than at low ones. 3. At any given perfusion rate, the initial rates of NA uptake obeyed Michaelis-Menten kinetics. While changes of the rate of flow did not alter the apparent K m (range: 2.2–2.4 μM), a rectangular hyperbolic relationship was found between V max and the perfusion rate. The V max was half-maximal at a rate of flow of 2.7 ml·g−1·min−1 and approached a maximum value of 9.0 nmoles·g−1·min−1. 4. From the lack of change in the K m it can be concluded that the uptake sites of the perfused heart are functionally arranged in parallel. The change in V max, on the other hand, indicate that the accessibility of the sites is limited by the rate of perfusion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1912
    Keywords: Neuronal uptake ; Initial rates of amine uptake ; Lag period for amine uptake ; Cocaine ; Rabbit heart
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Hearts were obtained from normal or reserpine-pretreated rabbits and perfused at a constant rate (3.6 ml·g−1·min−1) with Tyrode's solution containing 14C- or 3H-sorbitol and various concentrations of 3H-(−)noradrenaline (NA), 14C-(+)NA or 3H-(±)metaraminol; when NA was used, monoamine oxidase and catechol-O-methyl transferase were inhibited. During perfusion for 2 min the arterio-venous difference for 3H and 14C activity (and in this way the removal of amine and sorbitol from the perfusion fluid) was determined at intervals of 5 s. The uptake of amine into intracellular spaces of the heart was obtained by subtraction of the removal of sorbitol from that of amine; it was cumulatively added and plotted against time (uptake curve). Uptake was overwhelmingly neuronal. 2. The uptake curves were sigmoidal: after a brief initial lag period, uptake curves became linear; there-after, the slope of the curves decreased. The last phase of divergence from linearity occurred the earlier and was the more pronounced, the higher the amine concentration. It was interpreted to indicate that neuronal efflux of amine then began to reduce net uptake. 3. From the slope of the linear phase of the uptake curves initial rates of amine transport were obtained. They were saturable with increasing amine concentrations and obeyed Michaelis-Menten kinetics. The apparent K m values of the three amines were similar in magnitude and ranged from 2.9 to 5.9 μM. Uptake was stereoselective in that the V max of (+)NA was significantly lower than that of (−)NA. Pretreatment with reserpine affected neither the K m nor the V max for uptake. Cocaine was a potent competitive inhibitor of amine transport (K i=0.5–1.0 μM). 4. The intercept of the linear phase of the uptake curves on the time axis (t lag) (corrected for the time necessary for transit through the dead space) was taken as a measure of the lag period. It declined when uptake was progressively saturated (or inhibited) by increasing substrate (or cocaine) concentrations. Moreover, t lag was always linearly correlated with the fraction of amine removed from the perfusion fluid. These findings indicate that the equilibration of the uptake sites with the substrate concentration in the perfusion fluid is delayed by the uptake process itself, especially under low saturation conditions (i.e., when S〈K m).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1912
    Keywords: Noradrenaline clearance ; Fractional noradrenaline extraction ; Differently 3H-labelled noradrenaline ; Plasma DOPEG ; Anaesthetized rabbit
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Rabbits were anaesthetized with urethane/chloralose and infused intravenously with trace amounts of 3H-2,5,6-, 3H-7,8- or 3H-7-(-)noradrenaline either without or with unlabelled (\t-)noradrenaline being simultaneously infused (0.2 gg kg\t-1 min\t-1). To obtain clearance values and extraction ratios for the pulmonary, systemic and total circulation, steady-state concentrations of infused noradrenaline were determined in mixed central venous (C v) and arterial (C v) plasma. Heart rate and blood pressure were recorded via the carotid artery, and the dye dilution method was used to determine the cardiac output of plasma. 2. The simultaneous infusion of unlabelled noradrenaline, which increased plasma levels of noradrenaline by a factor of 5, had no significant effect on either heart rate, blood pressure or cardiac output (when determined at steady state of the noradrenaline infusion). 3. The simultaneous infusion of unlabelled noradrenaline did not affect the clearance values of any of the three type of 3H-noradrenaline. Moreover, the clearances of the various types of 3H-noradrenaline were virtually identical and agreed with that of unlabelled noradrenaline. However, the clearance of labelled and unlabelled noradrenaline from arterial plasma was 1.15 times higher than that from central venous plasma. This factor corresponded to the ratio of C v/C a and pointed towards net removal of noradrenaline from the pulmonary circulation. 4. The fractional pulmonary extractions [1 - (C a/C a)] of the three types of 3H-noradrenaline did not differ from each other and were not affected by the simultaneous infusion of unlabelled noradrenaline. Moreover, the fractional pulmonary extraction of endogenous noradrenaline resembled that of infused 3H- and unlabelled noradrenaline, suggesting that there was little, if any, overflow of endogenous noradrenaline into plasma during passage through the pulmonary circulation. 5. From the clearance of noradrenaline from mixed central venous plasma, its fractional pulmonary extraction and the cardiac output of plasma estimates of the following steady-state kinetic parameters for infused noradrenaline were obtained: pulmonary, systemic as well as total body clearance (13.4, 67.9, 72.6 ml kg\t-1 min\t-1) and fractional extraction (0.128, 0.650, 0.695). The rates at which infused noradrenaline was eliminated from the pulmonary and systemic circulation amounted to 18.4 and 81.6% of the total body elimination rate, respectively. 6. The infusion of unlabelled noradrenaline increased plasma levels of 3,4-dihydroxyphenylglycol (DOPEG) by a factor of 1.2. DOPEG concentrations in arterial plasma were 4.9% higher than those in mixed central venous plasma. Hence, there was some net formation of DOPEG in the pulmonary circulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 340 (1989), S. 726-732 
    ISSN: 1432-1912
    Keywords: 3,4-Dihydroxyphenylglycol ; Presynaptic noradrenaline metabolism ; Noradrenaline infusion ; Desipramine ; Anaesthetized rabbit
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary (1.) The purpose of this study was to investigate the role of neuronal uptake in the appearance in plasma of the primary noradrenaline metabolite 3,4-dihydroxyphenylglycol (DOPEG). To this end, steady-state changes in mixed central-venous plasma concentrations of noradrenaline and DOPEG produced by noradrenaline infusions or by changes in sympathetic tone were determined in anaesthetized rabbits either under control conditions or after treatment with desipramine (2 mg kg−1). The steady-state kinetics of infused DOPEG were also evaluated. (2.) Infused DOPEG (2.9 nmol kg−1 min−1 i.v. for 75 min) reached steady-state concentrations in plasma within less than 30 min, disappeared from plasma with a half-life of 2.3 min and showed a total-body plasma clearance of 84.0 ml kg−1 min−1 (3.) Constant-rate infusions of noradrenaline (1.2–5.9 nmol kg−1). (min−1 i.v. for 75 min) produced increases in plasma noradrenaline and DOPEG concentrations which were linearly related to the rate of noradrenaline infusion. Thus, the plasma clearance of infused noradrenaline (75.8 ml kg−1). min−1 as well as the increase in plasma DOPEG expressed in % of that in plasma noradrenaline (9.4%) was virtually independent of the noradrenaline infusion rate. (4.) Desipramine reduced the plasma clearance of infused noradrenaline by 35.4% and the increment in plasma DOPEG relative to that in plasma noradrenaline by 75.3%. From these results and the plasma clearance of noradrenaline and DOPEG it was calculated that the rate at which presynaptically formed DOPEG appeared in plasma amounted to 7.9% of the rate of total noradrenaline removal and to 22.3% of the rate of neuronal uptake. (5.) The rate of appearance in plasma of DOPEG originating from the neuronal re-uptake of endogenous noradrenaline was 192.3 pmol (kg−1). min−1 suggesting that the rate of neuronal re-uptake amounted to 862.3 pmol (kg−1) min−1 (6.) The slope of the regression line relating plasma DOPEG to plasma noradrenaline concentrations under conditions of noradrenaline release exceeded that of the corresponding regression line observed during noradrenaline infusion by a factor of about 10. This difference in slope suggests that, in the absence of infused noradrenaline, the average noradrenaline concentration at all noradrenergic neuroeffector junctions of the rabbit is 3.2 times as high as that in plasma.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...