Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (4)
  • Biochemistry and Biotechnology  (2)
  • pyrene  (2)
Source
  • Articles: DFG German National Licenses  (4)
Material
Years
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 36 (1998), S. 1217-1226 
    ISSN: 0887-624X
    Keywords: polypropylene ; pyrene ; two-solute system ; pulse radiolysis ; solute ionic species ; solute excited states ; low-temperature radiolysis ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A pulse radiolysis study of isotactic polypropylene (PP) film has been carried out with the main aims of investigating charge trapping in an undoped system and solute radical ion generation in an pyrene (Py) doped matrix. In PP, pulse radiolysis gives electron-positive hole pairs. The electron can be stabilized in the undoped system as a trapped electron, et-. The transient absorption spectrum of et- in the near-IR (up to 1800 nm) was observed in the temperature range 30-100 K. This IR absorption was not detected in the case of oxidized PP. In such a matrix electrons can be scavenged by oxidation products generating respective radical-anions (absorption in the UV RANGE, λ 〈 350 nm). In a doped matrix transient absorption bands centered at 450 and 500 nm were observed which can be assigned to the Py radical cation and anion, respectively. The recombination of these ionic species leads to monomer excited-state formation observed during and after the 17 ns pulse. Contrary to the Py-doped polyethylene no excimer emission was detected at room temperature even if Py content in PP was close to 0.02 mol dm-3. The rate of Py radical-ion decay was found to be temperature dependent. Two linear parts of the Arrhenius plot were observed which intersected at ca. 240 K, the glass transition temperature, Tg, for PP. The activation energies calculated for two parts of Arrhenius plot were equal to 111 and ca. 0.78 kJ mol-1 for T 〉 Tg and T 〈 Tg, respectively. Some preliminary results concerning the ionic processes in PP containing two solutes (Py, 3,3′-dimethyldiphenyl) were presented. The mechanism of ionic recombination in PP will be proposed and discussed. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1217-1226, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 36 (1998), S. 1209-1215 
    ISSN: 0887-624X
    Keywords: poly(methyl methacrylate) ; pyrene ; pulse radiolysis ; radical ion decay ; ion recombination ; fluorescence ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A pulse radiolysis study of poly(methyl methacrylate) in the presence of pyrene has been carried out in the temperature range 100-295 K. The concentration of pyrene was changed from 10-3 to 10-1 mol dm-3. The absorption/emission spectra and kinetics of solute excited states and solute radical ions were investigated. It was found that pyrene excited states were formed as a result of their radical ion recombination in a time scale up to seconds. The decay of solute radical ions was influenced by photobleaching and can be described by a time-dependent rate constant. The activation energy of Py ions decay was temperature dependent and was equal to 35.7 and 1.2 kJ/mol for temperatures 〉Tγ and 〈Tγ, respectively, where Tγ ∼ 175 K represented the transition temperature responsible for γ-relaxation. The reaction mechanism was proposed. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1209-1215, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 38 (1991), S. 557-560 
    ISSN: 0006-3592
    Keywords: levan ; continuous culture ; molecular weight ; Erwinia herbicola ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The optimal production of the fructan biopolymer levan by the bacterium Erwinia herbicola was investigated, including variations in nitrogen, carbon and phosphorous sources, pH, incubation time, culture yields up to 19% by weight produced based on conversion of sucrose as the carbon source when grown in a continuous culture system and processed by tangential flow filtration. Product identity was confirmed with gas chromatography (GC) and 13C nuclear magnetic resonance (NMR). Gel permeation chromatography (GPC) and low-angle laser light scattering (LALLS) determination of the molecular weight of the product showed a significant difference in molecular weight values dependent on the method of analysis. Analysis by GPC resulted in molecular weight one order of magnitude lower than LALLS independent of sample, underscoring the unusual nature of this biopolymer.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 50 (1996), S. 562-567 
    ISSN: 0006-3592
    Keywords: tissue engineering ; synthetic biodegradable matrix ; polyglycolic acid ; polylactic acid ; endothelial cell ; heart valve ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Tissue engineered lamb heart valve leaflets (N - 3) were constructed by repeatedly seeding a concentrated suspension of autologous myofibroblasts onto a biodegradable synthetic polymeric scaffold composed of fibers made from polyglycolic acid and polylactic acid. Over a 2-week period the cells attached to the polymer fibers, multiplied, and formed a tissue core in the shape of the matrix. The tissue core was seeded with autologous large-vessel endothelial cells that formed a monolayer which coated the outer surface of the leaflet. The tissue engineered leaflets were surgically implanted in place of the right posterior pulmonary valve leaflet of the donor lamb while on cardiopulmonary bypass. Pulmonary valve function was evaluated by two-dimensional echocardiography with color Doppler which demonstrated valve function without evidence of stenosis and with only trivial regurgitation under normal physiologic conditions. Histologically, the tissue engineered heart valve leaflets resembled native valve leaflet tissue. © 1996 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...