Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (18)
  • Biochemistry and Biotechnology  (18)
  • 11
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 145-158 
    ISSN: 0887-3585
    Keywords: protein titration ; molecular dynamics ; average conformation ; continuum electrostatistics ; protein dielectric constant ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Several methods for including the conformational flexibility of proteins in the calculation of titration curves are compared. The methods use the linearized Poisson-Boltzmann equation to calculate the electrostatic free energies of solvation and are applied to bovine pancreatic trypsin inhibitor (BPTI) and hen egg-white lysozyme (HEWL). An ensemble of conformations is generated by a molecular dynamics simulation of the proteins with explicit solvent. The average titration curve of the ensemble is calculated in three different ways: an average structure is used for the pKa calculation; the electrostatic interaction free energies are averaged and used for the pKa calculation; and the titration curve for each structure is calculated and the curves are averaged. The three averaging methods give very similar results and improve the pKa values to approximately the same degree. This suggests, in contrast to implications from other work, that the observed improvement of pKa values in the present studies is due not to averaging over an ensemble of structures, but rather to the generation of a single properly averaged structure for the pKa calculation. Proteins 33:145-158, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 11 (1991), S. 29-34 
    ISSN: 0887-3585
    Keywords: drug-design ; ligand-binding ; hemagglutinin ; functional groups ; MCSS ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A new method is proposed for determining energetically favorable positions and orientations for functional groups on the surface of proteins with known three-dimensional structure. From 1,000 to 5,000 copies of a functional group are randomly placed in the site and subjected to simultaneous energy minimization and/or quenched molecular dynamics. The resulting functionality maps of a protein receptor site, which can take account of its flexibility, can be used for the analysis of protein ligand interactions and rational drug design. Application of the method to the sialic acid binding site of the influenza coat protein, hemagglutinin, yields functional group minima that correspond with those of the ligand in a cocrystal structure.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 12 (1992), S. 237-265 
    ISSN: 0887-3585
    Keywords: β-sheet-coil transition ; β-hairpin ; Langevin dynamics ; equilibrium properties ; quasiparticle ; effective potential ; autocorrelations ; cross-correlations ; time histories ; rate constants ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A simplified model of a polypeptide chain is used to study the dynamics of the β-sheet-coil transition. Each amino acid residue is treated as a single quasiparticle in an effective potential that approximates the potential of mean force in solution. The model is used to study the equilibrium and dynamic aspects of the sheet-coil transition. Systems studied include ones with both strands free to move (two-strand sheet), and ones with either strand fixed in position (multistrand sheet). The equilibrium properties examined include sheet-coil equilibrium constants and their dependence on chain position. Dynamic properties are investigated by a stochastic simulation of the Brownian motion of the chain in its solvent surroundings. Time histories of the dihedral angles and residue-residue cross-strand distances are used to study the behavior of the sheet structure. Auto-and cross-correlation functions are calculated from the time histories with relaxation times of tens to hundreds of picoseconds. Sheet-coil rate constants of tens of ns-1 were found for the fixed strand cases.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 19 (1994), S. 199-221 
    ISSN: 0887-3585
    Keywords: multicopy simulation search ; rational drug design ; database search ; computer-aided design ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A program (HOOK) is described for generating potential ligands that satisfy the chemical and steric requirements of the binding region of a macromolecule. Functional group sites with defined positions and orientations are derived from known ligand structures or the multicopy simulation search (MCSS) method (Miranker, A., Karplus, M. Proteins 11:29-34, 1991). HOOK places molecular “skeletons” from a database into the protein binding region by making bonds between sites (“hooks”) on the skeleton and functional groups. The nonpolar interactions with the binding region of candidate molecules are assessed by use of a simplified van der Waals potential. The method is illustrated by constructing ligands for the sialic acid binding site of the hemagglutinin from the influenza A virus and the active site of chloramphenicol acetyltransferase. Aspects of the HOOK program that lead to a highly efficient search of 105 or more skeletons for binding to 102 or more functional group minima are outlined. © 1994 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 20 (1994), S. 25-33 
    ISSN: 0887-3585
    Keywords: hemodynamic integration ; RISM theory ; alchemical path ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A theoretical analysis is made of the decomposition into contributions from individual interactions of the free energy calculated by thermodynamic integration. It is demonstrated that such a decomposition, often referred to as “component analysis,” is meaningful, even though it is a function of the integration path. Moreover, it is shown that the path dependence can be used to determine the relation of the contribution of a given interaction to the state of the system.To illustrate these conclusions, a simple transformation(Cl- to Br- in aqueous solution) is analyzed by use of the Reference Interaction Site Model-Hypernetted Chain Closure integral equation approach; it avoids the calculational difficulties of macromolecular simulation while retaining their conceptual complexity. The difference in the solvation free energy between chloride and bromide is calculated, and the contributions of the Lennard-Jones and electrostatic terms in the potential function are analyzed by the use of suitably chosen integration paths. The model is also used to examine the path dependence of individual contributions to the double free energy differences (ΔΔG or ΔΔA) that are often employed in free energy simulations of biological systems. The alchemical path, as contrasted with the experimental path, is shown to be appropriate for interpreting the effects of mutations on ligand binding and protein stability. The formulation is used to obtain a better understanding of the success of the Poisson-Boltzmann continuum approach for determining the solvation properties of polar and ionic systems. © 1994 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 16 (1993), S. 172-194 
    ISSN: 0887-3585
    Keywords: serine protease ; active site solvation ; stochastic simulation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The motions of water molecules, the acyl moiety, the catalytic triad, and the oxyanion binding site of acyl-chymotrypsin were studied by means of a stochastic boundary molecular dynamics simulation. A water molecule that could provide the nucleophilic OH- for the deacylation stage of the catalysis was found to be trapped between the imidazole ring of His-57 and the carbonyl carbon of the acyl group. It makes a hydrogen bond with the Nε2 of His-57 and is heldin place through a network of hydrogen-bonded water molecules in theactive site. The water molecule was found as close as 2.8 Å to the carbonyl carbon. This appears to be due to the constraints imposed by nonbonded interaction in the active site. Configurations were found in which one hydrogen of the trapped water shared a bifurcated hydrogen bond with His-57-Nε2 and Ser-195-0γ with the water oxygen very close to the carbonyl carbon. The existence of such a water molecule suggests that large movement of the His-57 imidazole ring between positions suitable for providing general-base catalyzed assistance and for providing general-acid catalyzed assistance may notbe required during the reaction. The simulation indicates that the side chains of residues involved in catalysis (i.e., His-57, Ser-195, and Asp-102) are significantly less flexible than other side chains in the protein. The 40% reduction in rms fluctuations is consistent with a comparable reduction calculated from the temperature factors obtained in the X-ray crystal-lographic data of γ-chymotrypsin. The greater rigidity of active site residues seems to result from interconnected hydrogen bonding networks among the residues and between the residues and the solvent water in the active site. © Wiley-Liss, Inc.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 23 (1995), S. 318-326 
    ISSN: 0887-3585
    Keywords: evaluation ; comparative protein modeling ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We evaluate 3D models of human nucleoside diphosphate kinase, mouse cellular retinoic acid binding protein I, and human eosinophil neurotoxin that were calculated by MODELLER, a program for comparative protein modeling by satisfaction of spatial restraints. The models have good stereochemistry and are at least as similar to the crystallographic structures as the closest template structures. The largest errors occur in the regions that were not aligned correctly or where the template structures are not similar to the correct structure. These regions correspond predominantly to exposed loops, insertions of any length, and non-conserved side chains. When a template structure with more than 40% sequence identity to the target protein is available, the model is likely to have about 90% of the mainchain atoms modeled with an rms deviation from the X-ray structure of ≈ 1 Å, in large part because the templates are likely to be that similar to the X-ray structure of the target. This rms deviation is comparable to the overall differences between refined NMR and X-ray crystallography structures of the same protein. © 1995 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 23 (1995), S. 12-31 
    ISSN: 0887-3585
    Keywords: molecular dynamics ; electrostatics ; carboxypeptidase A ; carbonic anhydrase ; zinc ion ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Force field parameters that use a combination of Lennard-Jones and electrostatic interactions are developed for divalent zinc and tested in solution and protein simulations. It is shown that the parameter set gives free energies of solution in good agreement with experiment. Molecular dynamics simulations of carboxypeptidase A and carbonic anhydrase are performed with these zinc parameters and the CHARMM 22 β all-atom parameter set. The structural results are as accurate as those obtained in published simulations that use specifically bonded models for the zinc ion and the AMBER force field. The inclusion of longer-range electrostatic interactions by use of the Extended Electrostatics model is found to improve the equilibrium conformation of the active site. It is concluded that the present parameter set, which permits different coordination geometries and ligand exchange for the zinc ion, can be employed effectively for both solution and protein simulations of zinc-containing systems. © 1995 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...