Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (1)
  • Calcium-activated potassium channel  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 23 (1991), S. 537-560 
    ISSN: 1573-6881
    Keywords: Calcium-activated potassium channel ; potassium channel ; ion channel, channel gating
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract A wide variety of calcium-activated K channels has been described and can be conveniently separated into three classes based on differences in single-channel conductance, voltage dependence of channel opening, and sensitivity to blockers. Large-conductance calcium-activated K channels typically require micromolar concentrations of calcium to open, and their sensitivity to calcium increases with membrane depolarization, suggesting that they may be involved in repolarization events. Small-conductance calcium-activated K channels are generally more sensitive to calcium at negative membrane potentials, but their sensitivity to calcium is independent of membrane potential, suggesting that they may be involved in regulating membrane properties near the resting potential. Intermediate-conductance calcium-activated K channels are a loosely defined group, where membership is determined because a channel does not fit in either of the other two groups. Within each broad group, variations in calcium sensitivity and single-channel conductance have been observed, suggesting that there may be families of closely related calcium-activated K channels. Kinetic studies of the gating of calcium-activated potassium channels have revealed some basic features of the mechanisms involved in activation of these channels by calcium, including the number of calcium ions participating in channel opening, the number of major conformations of the channels involved in the gating process, and the number of transition pathways between open and closed states. Methods of analysis have been developed that may allow identification of models that give accurate descriptions of the gating of these channels. Although such kinetic models are likely to be oversimplifications of the behavior of a large macromolecule, these models may provide some insight into the mechanisms that control the gating of the channel, and are subject to falsification by new data.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...