Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (22)
  • Chemistry  (22)
  • DNA-protein interaction  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Chicester [u.a.] : Wiley-Blackwell
    Journal of Molecular Recognition 7 (1994), S. 221-226 
    ISSN: 0952-3499
    Keywords: RecA protein ; DNA-protein interaction ; Linear dichroism ; Intercalation ; ATP ; Homologous recombination ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: In an attempt to understand the role of ATP as a cofactor at the interaction of the RecA protein with DNA, we have studied the orientation geometries of the cofactor analogs adenosine 5′-O-(3-thiotriphosphate) (ATPγS) and guanosine 5′-O-(3-thiotriphosphate) (GTPγS) in RecA-DNA complexes using flow linear dichroism spectroscopy. Both cofactors promote the formation of RecA-DNA complexes of similar structure as judged from similar orientations of DNA bases. The DNA orientation was probed through the dichroism of the long-wavelength absorption of a DNA analog, poly(dεA). In this way differences between the dichroic spectra of the ATPγS-RecA-DNA and GTPγS-RecA-DNA complexes, observed in the shorter-wavelength region, are related to orientation at variations of the cofactor chromophores. The results show that the guanine plane of GTPγS is oriented parallel with the principal axis of the complex in contrast to the more perpendicular orientation of the DNA bases. This observation directly excludes the possibility that the cofactor could be intercalated between the DNA bases. This observation directly excludes the possibility that the cofactor could be intercalated between the DNA bases. The orientation of the adenine base of ATPγS, which may be similar to that of guanine of GTPγS albeit not exactly the same, is also inconsistent with intercalation. The possibility that the cofactor bound to the protein could be intercalated in DNA had been speculated from the observation that some DNA intercalators can induce RecA binding to DNA in the absence of cofator. There are probably no direct interactions between the cofator and the DNA bases and the role of the cofactor is probably related to interaction with RecA and a modification of protein conformation.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chicester [u.a.] : Wiley-Blackwell
    Journal of Molecular Recognition 7 (1994), S. 141-155 
    ISSN: 0952-3499
    Keywords: DNA binding geometries ; DNA-drug Complex ; DNA-protein complex ; Circular dichroism ; Linear dichroism ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The application of linear and circular dichroism (LD and CD) in nucleic acid research id illustrated by recent results aimed at answering specific structural problem in the interaction of DNA with molecules of biological importance. We first consider the circumstances under which ligands, such as DAPI (4′, 6-diamidino-2-phenylindole), change their preferred binding mode in the minor groove to major groove binding or intercalation. As an extension of this problem we refer to the switch between groove binding and intercalation of structurally similar ligands such as ellipticines and trigonal ruthenium complexes. We also explore the use of LD and CD in the determination of the structure of the complex formed between the polynucleotide poly(dA) and the novel ‘peptide nucleic acid’, consisting of nucleic acid bases joined by a polyamide homomorphous with the deoxyribose-phosphate backbone of DNA. Finally, the structure and interaction of the recombination enzyme RecA with DNA is discussed, in particular the influence of the presence of the intercalators, groove binders or covalent DNA adducts.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0947-6539
    Keywords: DNA recognition ; helical structures ; nucleotides ; peptide nucleic acid ; thermal stability ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Peptide nucleic acid (PNA) is an achiral nucleic acid mimic with a backbone consisting of partly flexible aminoethyl glycine units. By replacing the aminoethyl portion of the backbone by an amino cyclohexyl moiety, either in the (S, S) or the (R, R) configuration, we have synthesized conformationally constrained PNA residues. PNA oligomers containing (S, S)-cyclohexyl residues were able to form hybrid complexes with DNA or RNA, with little effect on the thermal stability (Tm = 1°C per (S, S) unit, depending on their number and the sequence). In contrast, incorporation of the (R, R) isomer resulted in a drastic decrease in the stability of the PNA-DNA (or RNA) complex (Tm = -8°C per (R, R) unit). In PNA-PNA duplexes, however, the (R, R)- and (S, S)-cyclohexyl residues only exerted a minor effect on the stability, and the complexes formed with the two isomers are of opposite handedness, as evidenced from circular dichroism spectroscopy. In some cases the introduction of a single (S, S) residue in a PNA 15-mer improves its sequence specificity for DNA or RNA. From the thermal stabilities and molecular modeling based on the solution structure of a PNA-DNA duplex determined by NMR techniques, we conclude that the right-handed helix can accommodate the (S, S) isomer more easily than the (R, R) isomer. Thermodynamic measurements of H and S upon PNA-DNA duplex formation show that the introduction of an (S, S)-cyclohexyl unit in the PNA does indeed decrease the entropy loss, indicating a more conformationally constrained structure. However, the more favorable entropic contribution is balanced by a reduced enthalpic gain, indicating that the structure constrained by the cyclohexyl group is not so well suited for DNA hybridization.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 21 (1982), S. 1713-1734 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Bradley et al. [(1972) Biopolymers 11, 645-652] used electro-optical measurements to show that methylene blue (MB), like acridine orange, in its DNA complex is oriented more or less perpendicular to the helix axis as expected if intercalated. High-precision flow linear dichroism (LD) here confirms that MB is coplanar with the DNA bases at low dye/DNA binding ratios and low ionic strengths. CD shows two origins of induced optical activity for the transition of lowest energy (polarized parallel to the long-axis of the dye molecule): at low binding ratios (r 〈 0.05), a weak monomeric CD with the same shape as the absorption curve is observed, while at higher binding ratios, a strong exciton CD dominates due to interaction between pairs of MB ligands. The monomeric CD spectrum shows a remarkable dependence on ionic strength: it is negative in the absence of extra salt, but changes sign (at ca 20 mM NaCl or 0.15 mM MgCl2) and becomes essentially the positive mirror-image spectrum at high ionic strengths (〉300 mM Na+ or 〉0.4 mM Mg2+). Nondegenerate coupled-oscillator theory can explain the CD in terms of interactions of transition moments of the dye and the nearest nucleotide bases and indicates a change between two intercalation geometries: a Lerman type of mode, denoted γ-, and an orthogonal mode, denoted γ+. This rotation of MB in the base-pair pocket is accomplished at Na+ and Mg2+ concentrations when the phosphates are effectively screened and the result suggests a more localized bonding of Mg2+ than is expected from simple polyelectrolyte models. The exciton effect at high binding ratios, observed both in CD and in LD, can be interpreted in terms of an interaction between an intercalated and a nonintercalated MB. The geometry of this “accidental” dimer is consistent with a location of the nonintercalated MB in the minor groove, bridging the strands by the positively charged amino groups directed towards phosphate groups. The dihedral angle of the MB pairs, corresponding to a left-handed helix, is opposite to that with acridine orange and proflavine on DNA, indicating that the latter ligands bind to DNA in a different way.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We have calculated the uv linear dichroism for the A- and B-forms of DNA using π-π* transition moments and band components determined from the free DNA bases. The reduced dichroism (LDR) as a function of wavelength is estimated is in the 220-300-nm region, for both the oriented-gas model and a simple exciton model. For B-form DNA, LDR is obtained to -1.48S (S being the orientation factor) over the whole wavelenth region by both models. For A-form DNA, LDR is not constant, but changes monotonically from about -1.15S at 220 nm to about -1.35S to -1.45S at 300 nm, depending on base combination and degree of interaction (-1.35S for the oriented gas). It is emphasized that a common assumption of a single “effective” transition moment of the principal band at 260 nm may not generally be made because of the extensive overlap of differently polarized bands. The possibility of using the reduced dichroism curve for characterizing the secondary structure of DNA is discussed.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The uv linear dichroism of calf thylus DNA has been studied at different degrees of orientation both in flow-oriented ethanol-water solutions and in a stretched aqueous host of poly(vinyl alcohol) (PVA). The reduced dichroism (LDR) curves in the region 250-290 nm for DNA in PVA films at 75 and 100% relative humidity (r.h.) are in fair agreement with the curves calculated for the A- and B-forms of DNA, based on the fiber structures and the π-π* transitions of the free bases. This suggests that DNA adopts its A and B conformations in PVA at 75 and 100% r.h. In ethanol, on the other hand, a deviation from the A-form spectrum shows that the conformation of DNA in the solution can differ from the fiber structure. At shorter wavelenghts, a positive contribution to LDR is explained in terms of an out-of-plane polarized n-π* transition.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 25 (1986), S. 1209-1228 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We studied the interactions of the substitution-inert inversion-labile complexes Fe(bipy)32+ and Fe(phen)32+ [and the inversion-stable complex Ru(bipy)32+] with DNA. The association of these complexes to DNA is mainly electrostatic, and Fe(phen)32+ shows a more effective binding to DNA than the two bipyridyl complexes, possibly owing to a different binding mode. The interactions are enantioselective, leading to a Pfeiffer shift in the diastereomeric inversion equilibria and an excess of the Δ-enantiomer of Fe(phen)32+ and Fe(bipy)32+, which is directly monitorable through CD. The partition constants for the inversion equilibrium range from 1.3 to 2.0 for Fe(bipy)32+ and Fe(phen)32+, depending on ionic conditions. From flow LD information about the orientation of the complexes on DNA was obtained: it is consistent with a fit of the Δ-enantiomer in the major groove of the right-handed DNA helix. The mechanisms of interaction are discussed against equilibrium, spectroscopic, and kinetic data.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 27 (1988), S. 381-414 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A method for in situ study of orientation of DNA during gel electrophoresis has been developed. Linear dichroism spectra measured by this phase-modulation technique can sensitively and selectively detect orientation of DNA during electrophoretic migration in gel. [Measurement of “electrophoretic orientation” was first reported in 1985 by B. Åkerman, M. Jonsson, and B. Nordén (1985) (J. Chem. Soc. Chem. Commun. 422-423)]. Restriction fragments of duplex DNA of lengths in the ranges of 300-2319 base pairs (bp) and 4361-23130 bp have been studied in 5% polyacrylamide and 1% agarose gels, respectively. The fragments become preferentially oriented with the DNA helix axis parallel to the migration direction. In agarose the orientation is found to increase sigmoidally, and in polyacrylamide, linearly, with the electric field strength, within the field ranges accessible to measurement (0-40 and 5-40 V/cm, respectively). In both types of gels a considerable increase in orientation with length of DNA was observed. Compared to dipole orientation in electric fields, the electrophoretic orientation is high: orientation factor S = 0.027 in agarose for 23130 bp at 10 V/cm and S = 0.004 in polyacrylamide for 2319 bp at 10 V/cm. In addition to orientation of DNA, the electrophoresis also leads to orientation effects in the gel structure owing to Joule heating. In agarose there is also an effect that is associated with the migrating DNA zones and that produces different orientations of the gel at the front and rear parts of a zone. Evidence is presented that this effect is due to a DNA-induced electroosmotic flow causing a contraction of the gel in the front of the zone and an expansion in the rear. The experimental results on DNA orientation are compared with the reptation theories for gel electrophoresis. The theory of Lumpkin et al. [O. J. Lumpkin, P. Dejardin, and B. H. Zimm (1985) Biopolymers 24, 1573-1593] predicts no orientation length dependence, but it does predict a shape of the field dependence that resembles the shape observed in agarose. The theory of Slater and Noolandi [G. W. Slater and J. Noolandi (1986) Biopolymers 25, 431-454] predicts an orientational length dependence that is an order of magnitude less than the experimental one, and a field dependence that agrees neither with the sigmoidal shape observed in agarose nor with the linear dependence in polyacrylamide.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The complexes of Hoechst 33258 with poly[d(A-T)2], poly[d(I-C)2], poly[d(G-C)2], and poly[d(G-m5C)2] were studied using linear dichroism, CD, and fluorescence spectroscopies. The Hoechst-poly[d(I-C)2] complex, in which there is no guanine amino group protruding in the minor groove, exhibits spectroscopic properties that are very similar to those of the Hoechst-poly[d(A-T)2] complex. When bound to both of these polynucleotides, Hoechst exhibits an average orientation angle of near 45° relative to the DNA helix axis for the long-axis polarized low-energy transition, a relatively strong positive induced CD, and a strong increase in fluorescence intensity - leading us to conclude that this molecule also binds in the minor groove of poly[d(I-C)2]. By contrast, when bound to poly[d(G-C)2] and poly[d(G-m5C)2], Hoechst shows a distinctively different behavior. The strongly negative reduced linear dichroism in the ligand absorption region is consistent with a model in which part of the Hoechst chromophore is intercalculated between DNA bases. From the low drug:base ratio onset of excitonic effects in the CD and fluorescence emission spectra, it is inferred that another part of the Hoechst molecule may sit in the major groove of poly[d(G-C)2] and poly[d(G-m5C)2] and preferentially stacks into dimers, though this tendency is strongly reduced for the latter polynucleotide. Based on these results, the importance of the interactions of Hoechst with the exocyclic amino group of guanine and the methyl group of cytosine in determining the binding modes are discussed. © 1996 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 21 (1982), S. 343-358 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We have studied the linear dichroism (LD) of rat liver chromatin oriented by flow. Soluble chromatin, prepared by brief nuclease digestion, is found to exhibit a positive LD at low ionic strength (1 mM NaCl), with a constant LD/A over the absorption band centered at 260 nm (A, isotropic absorbance). Several previous dichroism studies on soluble chromatin have been performed on sonicated materials and have given negative LD, probably due to the presence of uncoiled DNA. The positive dichroism can be interpreted in terms of a supercoil of DNA in chromatin with a pitch angle larger than 55°, and is, for example, consistent with a model where the cylindrical nucleosome core particles are stacked face to face in the chromatin filament. In contrast to the nuclease-digested chromatin, sonicated chromatin was confirmed to exhibit negative LD. This difference can be attributed to a partial uncoiling of the linker regions between the nucleosomes due to the shearing. The structural transition of chromatin to a compact form can be observed as a reduction of the positive LD of the nuclease-digested chromatin to almost zero in 0.1 M NaCl or in 0.1 mM MgCl2. This transition is due to a decreased electrostatic repulsion between negative phosphate groups on the DNA chain. In the case of Na+, this can be explained as a screening effect due to the bulk concentration of Na+. With Mg2+ a considerably stronger effect may indicate a more localized binding to the phosphates. At ionic strengths higher than 0.5M NaCl, the dissociation of the histones from DNA leads to uncoiling of chromatin. The change in LD during this process shows that histone H1 contributes only to a small degree to the coiling of the DNA chain, whereas histones H3 and H4 play the major role in the coiling.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...