Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 32 (1986), S. 6227-6235 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Poly(n-butyl acrylate) (PnBA) chemically crosslinked with tetraethylene glycol dimethacrylate (TEGDM) and physically crosslinked PnBAs produced by neutralization of poly(n-butyl acrylate-stat-acrylic acid) with NaOH or Ca(OH)2 were prepared as a polymer I network. Each polymer I was swollen with styrene and cured in situ into semi-IPN-TEGDM, semi-IPN-Na, or semi-IPN-Ca, respectively. Both physically crosslinked polymers maintained their shapes during the swelling procedure. Dynamic mechanical spectroscopy indicated that good mixing of the two polymers took place in the semi-IPN-Ca as well as in semi-IPN-TEGDM, but a distinct phase separation occurred in the semi-IPN-Na. These results were supported by their transparent or optical opaque appearances, respectively. Annealing at 180°C developed further phase separation in the semi-IPN-Na, but very little in the semi-IPN-Ca. Analyses by the incompatibility number (based on the modulus-temperature curve) and the calculation of individual phase compositions (from the glass transition temperature shifts) were used in estimating the extent of molecular mixing.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 32 (1986), S. 5903-5915 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Thermoplastic interpenetrating polymer networks (IPNs) were prepared by combining poly(n-butyl acrylate) with polystyrene, both polymers crosslinked independently with acrylic acid anhydride (AAA). Decrosslinking of both polymers was carried out by hydrolysis of the anhydride bonds. Neutralization of the carboxylic acid groups to form the ionomer was carried out in a Brabender Plasticorder. Two subclasses of thermoplastic IPNs were studied: (1) Chemically blended thermoplastic IPNs (CBT IPNs) were prepared by synthesizing polymer II in polymer I in a sequential synthesis; (2) mechanically blended thermoplastic IPNs (MBT IPNs) were prepared by melt blending separately synthesized polymers. Rheovibron characterization revealed that of the two combinations, the CBT IPNs were better mixed than the MBT IPNs. Investigations of phase continuity via melt viscosity and modulus suggest that the CBT IPNs have some degree of dual phase continuity. Transmission electron microscopy suggests dual phase continuity and relatively small phase domains, 2000-5000 Å for the CBT IPNs. The mechanical properties from tensile and Izod impact tests showed that the CBT IPNs were stronger than the MBT IPNs.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...