Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (2)
  • Cobalt monophosphide  (1)
  • CuP4O11  (1)
  • 1
    ISSN: 0044-2313
    Keywords: Chemical vapour transport ; ultraphosphate ; CuP4O11 ; crystal structure ; electronic spectra ; Chemistry ; Inorganic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Description / Table of Contents: Synthesis, Crystal Structure, and Properties of Copper(II) Ultraphosphate CuP4O11CuP4O11 was synthesised from Cu2P4O12 and P4O10 (500°C, sealed silica ampoules) using iodine and a few mg of CuP2 or phosphorus as mineraliser. Chemical transport reactions in a temperature gradient 600 → 500°C led to the formation of well developed, colourless, transparent crystals with edge-lengths up to 5 mm (deposition rate m ≍ 2 mg/h).The crystal structure of copper(II) ultraphosphate (C1; Z = 8; a = 13.084(3) Å, b = 13.024(2) Å, c = 10.533(2) Å, α = 89.28(2)°, β = 118.42(2)°, γ = 90.30(2)°) has been determined and refined from X-ray data obtained from a pseudo-merohedrally twinned crystal (twin element two-fold rotation axis // b; volume ratio: 17/3; 3063 independent reflections with 2θ ≤ 53.4°; 291 variables; conventional residual (based on F) R1 = 0.038, wR2 = 0.101 (based on F2), GooF = 1.10).The crystal structure of CuP4O11 is built from four crystallographically independent ten-membered polyphosphate rings of very similar conformation. These rings are linked to form two-dimensional nets parallel (-2 0 1) planes. There is a close topological relationship between these nets and those formed in polyphosphides CdP4 and CuP2. Copper on two crystallographic sites (Cu2P8O22) is coordinated by oxygen thus forming elongated [CuO6] octahedra (deq(Cu—O) ≍ 1.96 Å; dax(Cu—O) ≍ 2.34 Å).The crystal g-tensor of CuP4O11 has been determined from powder samples to g1 = 2.09, g2 = 2.24, g3 = 2.36. These values are in good agreement with molecular g-values from calculations within the framework of the angular overlap model on the two independent CuO6 octahedra (Cu2+(1): gx = 2.09, gy = 2.10, gz = 2.52; Cu2+(2): gx = 2.08, gy = 2.11, gz = 2.52) assuming exchange coupling. The observed broad absorption band (7000 cm-1 to 13000 cm-1) from powder reflectance measurements (4000-28000 cm-1) and the bulk magnetic susceptibility of μexp = 1.99 μB is also reproduced nicely by this calculations.
    Notes: Die Synthese von CuP4O11 gelingt aus Cu2P4O12 und P4O10. In direkt anschließenden chemischen Transportexperimenten (600 → 500°C, Zusatz von Iod und wenigen mg CuP2 oder Phosphor als Transportmittel) werden wohlausgebildete, farblos-transparente Kristalle mit Kantenlängen bis 4 mm erhalten (Transportrate ca. 2 mg/h).Anhand von Röntgenbeugungsdaten eines pseudomeroedrisch nach (010) verzwillingten Kristalls konnte die Kristallstruktur von Kupfer(II)-ultraphosphat (C1; Z = 8; a = 13,084(3) Å, b = 13,024(2) Å, c = 40,533(2) Å, α = 89,28(2)°, β = 118,42(2)°, γ = 90,30(2)°, Gitterkonstanten aus Guinier-Aufnahmen) bestimmt und verfeinert werden (Volumenverhältnis 17/3; 3063 symmetrieunabhängige Reflexe mit 2θ ≤ 53,4° und F02 ≥ 4σ(F02); 291 freie Parameter; konventioneller R-Wert R1 = 0,038, wR2 = 0,101, GooF = 1,10).Die Kristallstruktur enthält vier kristallographisch unterschiedliche zehngliedrige Polyphosphatringe ähnlicher Konformation, die zu zweidimensionalen Netzen parallel zu (-2 0 1) verknüpft sind. Kupfer ist auf zwei kristallographischen Lagen (Cu2P8O22) gestreckt-oktaedrisch von Sauerstoff koordiniert (deq(Cu—O) ≍ (1,96 Å; dax(Cu—O) ≍ (2,34 Å).Die Hauptachsen des g-Tensors für CuP4O11 wurden an pulverförmigen Proben bestimmt zu g1 = 2,09, g2 = 2,24 und g3 = 2,36. Diese Werte stehen bei Annahme einer Austauschkopplung in sehr guter Übereinstimmung mit molekularen g-Tensoren für die beiden unabhängigen CuO6-Oktaeder (Cu2+(1): gx = 2,09, gy = 2,10, gz = 2,52; Cu2+(2): gx = 2,08, gy = 2,11, gz = 2,52) wie sie aus Berechnungen im Rahmen des „angular overlap model“ für CuP4O11 abgeleitet werden. Diese Betrachtungen geben auch das beobachtete Remissionsspektrum (4000-28000 cm-1) mit einer breiten Bande zwischen 7000 cm-1 und 13000 cm-1 sowie die magnetische Suszeptibilität μexp = 1,99 μB gut wieder.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Zeitschrift für anorganische Chemie 621 (1995), S. 1693-1702 
    ISSN: 0044-2313
    Keywords: Cobalt monophosphide ; chemical transport ; thermochemical calculations ; Chemistry ; Inorganic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Description / Table of Contents: On the Chemical Vapour Transport of Cobalt Monophosphide using Iodine. Experiments and Thermochemical Model CalculationsCoP can be crystallized by chemical vapour transport using iodine as transport agent. Over a wide temperature range (650°C ≤ T̄ ≤ 1000°C; T̄ = (T1 + T2)/2; ΔT = 100 K) the migration from the higher to the lower temperature is based on the heterogeneous equilibrium \documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm CoP}_{\rm s} + 5/2{\rm I}_{2,{\rm g}} = {\rm CoI}_{2,{\rm g}} + {\rm PI}_{3,{\rm g}}. $$\end{document} CoI2,l is observed as second condensed equilibrium phase besides CoPs in experiments carried out at lower mean temperatures (T̄ ≤ 800°C) and with sufficiently high amounts of iodine. Thermochemical model calculations, based on modified data for CoI2,l, CoI2,g and Co2I4,g, reproduce the observed deposition rates as well as the compositions of the condensed equilibrium phases. These calculations allow a detailed description of the equilibrium gas phase in the system Co/P/I under variable experimental conditions. The influence of traces of moisture on the transport behavior will be discussed.
    Notes: CoP ist bei hinreichender Zugabe von Iod als Transportmittel über einen großen Temperaturbereich (650°C ≤ T̄ ≤ 1000°C; T̄ (T1 + T2)/2, ΔT = 100 K) aufgrund endothermer Reaktionen transportierbar. Zentrale Bedeutung für die Wanderung des Cobaltmonophosphids hat das heterogene Gleichgewicht \documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm CoP}_{\rm s} + 5/2{\rm I}_{2,{\rm g}} = {\rm CoI}_{2,{\rm g}} + {\rm PI}_{3,{\rm g}}. $$\end{document} Bei niedrigen Transporttemperaturen (T̄ ≤ 800°C) und genügend hohen Transportmitteldichten (D ≥ 7,5 mg · cm-3) liegt CoI2,l neben CoP in der Senke vor. Thermodynamische Modellrechnungen zum chemischen Transport von CoP mit Iod unter Verwendung überarbeiteter thermodynamischer Daten für CoI2,l, CoI2,g und Co2I4,g geben die beobachteten Phasenverhältnisse im Bodenkörper sowie die Transportraten für CoP gut wieder. Detaillierte Aussagen zur Zusammensetzung der Gleichgewichtsgasphase sind möglich. Der Einfluß von Feuchtigkeitsspuren auf das Transportverhalten wird erörtert.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...