Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (2)
  • Correlation functions  (1)
  • Nonlinear optics  (1)
  • 1
    ISSN: 1432-2234
    Keywords: Electron transfer ; Nonadiabatic ; Correlation functions ; Propagation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary We investigate the validity of several common approximations in the analysis of nonadiabatic intramolecular electron transfer rate constants. Utilizing the Fourier representation of the golden rule form, we study the evolution of the vibrational correlation function that represents the density-of-states-weighted Franck-Condon factor. In particular, we test the validity of the perturbation theoretic golden rule form and of the Gaussian wavepacket representation for the vibrational wavefunctions against numerically exact quantum mechanical propagations. Although specific cases are found in which both of these break down, for a wide range of conditions (including anharmonic behavior and frequency changes), both the Gaussian wavepacket representation and the golden rule are excellent approximations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Angewandte Chemie International Edition in English 34 (1995), S. 155-173 
    ISSN: 0570-0833
    Keywords: NLO materials ; nonlinear optics ; polymers ; self-assembly ; thin films ; Nonlinear optics ; Self-assembly ; Thin films ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The design, synthesis, characterization, and understanding of new molecular and macromolecular assemblies with large macroscopic optical nonlinearities represents an active field of research at the interface of modern chemistry, physics, and materials science. Challenges in this area of photonic materials typify an important theme in contemporary chemistry: to create new types of functional materials by the rational construction of supramolecular assemblies exhibiting preordained collective phenomena by virtue of “engineered” molecule-molecule interactions and spatial relationships. This review surveys several approaches to, and the microstructural and optical properties of, second-order nonlinear optical materials built from noncentrosymmetric assemblies of chromophores having large molecular hyperpolarizabilities. Such types of materials can efficiently double the frequency of incident light, exhibit other second-order nonlinear optical effects, and contribute to the knowledge base needed for new photonic device technologies. Systems described include chromophore macromolecule guesthost matrices, chromophore-functionalized glassy macromolecules, thermally crosslinked chromophore-macromolecule matrices, and intrinsically acentric self-assembled chromophoric superlattices.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...