Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (2)
  • Glucose infusion  (1)
  • diabetes  (1)
  • 1
    ISSN: 1432-0428
    Keywords: BB rat ; diabetes ; glucose intolerance ; insulin sensitivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In diabetes-prone BB rats, 30 to 50% of animals undergo autoimmune destruction of the pancreatic B-cells leading to a short period of glucose intolerance, followed by an abrupt onset of diabetes. We have examined whether the glucose intolerance period and the onset of diabetes are associated with changes in insulin sensitivity, using the euglycaemic hyperinsulinaemic clamp coupled with [3-3H] glucose infusion. Glucose intolerant rats were detected by a transient glycosuria one hour after an oral glucose load performed every four days. Insulin sensitivity studied in these rats the day following their detection was normal. Other diabetes-prone BB rats were tested daily and studied on the first day of glycosuria. In the basal state, glucose production was increased in diabetic rats (11.3±1.1 vs 7.1±0.8mg·min−1·kg−1, p〈0.05). Tissue glucose utilization was similar in diabetic and control rats (8.3±0.5 vs 7.1±0.8mg·min−1·kg−1) despite a three fold higher glycaemia in the diabetic rats. During the hyperinsulinaemic clamps, glycaemia was clamped at 6.1–6.6 mmol/l in diabetic and control rats. A decreased insulin sensitivity was observed in diabetic rats at submaximal (200 μU/ml) and maximal (1500 μU/ml) insulin concentrations for both inhibition of hepatic glucose production and stimulation of glucose utilization. No autoantibodies against insulin could be detected in the plasma of diabetic rats. Plasma concentrations of glucagon, catecholamines, ketone bodies and fatty acids were similar in control and diabetic rats during the clamp studies. Our results suggest that the decrease of basal insulin concentration is responsible for the insulin resistance in the diabetic BB rat at onset of diabetes, either directly or through the increased glycaemia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Glucose infusion ; in vivo insulin secretion ; in vitro insulin secretion ; beta-cell sensitivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary We investigated the importance of the level and the duration of glucose stimulation on the in vivo and in vitro insulin response to glucose in normal rats previously submitted to hyperglycaemia. Rats were made hyperglycaemic by a 48-h glucose infusion. Glucose-induced insulin secretion was investigated in vivo by a 20-min hyperglycaemic clamp and in vitro by the isolated perfused pancreas technique, 3 h after the end of the in vivo glucose infusion. In glucose-infused rats, as compared to controls, in vivo incremental plasma insulin values above baseline integrated over the 20-min hyperglycaemic clamp (ΔI) were five times higher during 8 mmol/l glucose clamp, only two times higher in 11 mmol/l glucose clamp and no different in 16.5 mmol/l. Compared to the controls, in vitro incremental plasma insulin concentration above baseline integrated over a 20-min period (ΔI) in glucose-infused rats was 16 times higher in response to 2.8 mmol/l glucose, two times higher in response to 5.5 mmol/l, similar in response to 8.3 mmol/l and significantly lower in response to 16.5 mmol/l. In conclusion, our data suggest that a 48-h hyperglycaemic period results in an increased response of the pancreatic beta cell to low glucose. The response is immediately maximal and can not be increased with higher glucose concentrations. This situation could explain the apparent minimal effect of high concentrations on in vitro insulin secretion in previously hyperglycaemic rats and may provide insights into the sequence of events leading to the impairment of beta-cell function in Type 2 (non-insulin-dependent) diabetes mellitus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...