Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (2)
  • Immunization Cyclosporin A  (1)
  • Locomotor activity  (1)
Source
  • Articles: DFG German National Licenses  (2)
Material
Years
  • 1
    ISSN: 1432-1106
    Keywords: Neural transplantation ; Spontaneous behaviour ; Human fetus ; Dopamine release ; Intracerebral dialysis ; Immunization Cyclosporin A ; Parkinson's disease
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary We have used a rat model of Parkinson's disease (PD) to address issues of importance for a future clinical application of dopamine (DA) neuron grafting in patients with PD. Human mesencephalic DA neurons, obtained from 6.5–8 week old fetuses, were found to survive intracerebral cell suspension xenografting to the striatum of rats immunosup-pressed with Cyclosporin A. The grafts produced an extensive new DA-containing terminal network in the previously denervated caudate-putamen, and they normalized amphetamine-induced, apomorphine-induced and spontaneous motor asymmetry in rats with unilateral lesions of the mesostriatal DA pathway. Grafts from an 11.5-week old donor exhibited a lower survival rate and smaller functional effects. As assessed with the intracerebral dialysis technique the grafted DA neurons were found to restore spontaneous DA release in the reinnervated host striatum to normal levels. The neurons responded with large increases in extracellular striatal DA levels after the intrastriatal administration of the DA-releasing agent d-amphetamine and the DA-reuptake blocker nomifensine, although not to the same extent as seen in striata with an intact mesostriatal DA system. DA fiber outgrowth from the grafts was dependent on the localization of the graft tissue. Thus, grafts located within the striatum gave rise to an extensive axonal network throughout the whole host striatum, whereas grafted DA neurons localized in the neocortex had their outgrowing fibers confined within the grafts themselves. In contrast to the good graft survival and behavioural effects obtained in immunosuppressed rats, there was no survival, or behavioural effects, of human DA neurons implanted in rats that did not receive immunosuppression. In addition, we found that all the graft recipients were immunized, having formed antibodies against antigens present on human T-cells. This supports the notion that the human neurons grafted to the non-immunosuppressed rats underwent immunological rejection. Based on an estimation of the survival rate and extent of fiber outgrowth from the grafted human fetal DA neurons, we suggest that DA neurons that can be obtained from one fetus may be sufficient to restore significant DA neurotransmission unilaterally, in one putamen, in an immunosuppressed PD patient.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Neural transplantation ; Nucleus accumbens ; Dopamine ; Circling behaviour ; Locomotor activity ; Amphetamine ; Apomorphine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The purpose of the present study was to investigate the amplifying function of the nucleus accumbens septi region (NAS) in 6-hydroxydopamine (6-OHDA)-induced rotational behaviour by implanting fetal dopamine (DA)-rich mesencephalic cell suspensions unilaterally in the NAS of rats previously subjected to combined mesostriatal (MS) and NAS 6-OHDA lesions. First, all the rats received a unilateral 6-OHDA lesion of the ascending MS DA pathway, which produced an amphetamine-induced rotational asymmetry towards the lesioned side. In a second step, the rats received a local bilateral 6-OHDA lesion of the NAS which, as previously shown, caused a significant attenuation of the amphetamine-induced locomotor (1.5 mg/kg) and rotational (5 mg/kg) behaviour. Finally, some of these MS + NAS lesioned rats received a unilateral mesencephalic DA graft into the NAS ipsilateral to the original MS lesion. The unilateral DA-rich grafts in the NAS significantly elevated the amphetamine-induced locomotion and ipsilateral circling (opposite to the direction of rotation produced when a graft is placed in the ipsilateral caudate-putamen), suggesting that the NAS plays only an amplifier role in locomotor behaviour and not a directional role. In addition, these grafts significantly attenuated the supersensitive locomotor response observed in lesioned rats when given apomorphine (0.05 mg/kg). The findings emphasize the amplifying role of the NAS in locomotion and circling behaviour and they extend previous findings demonstrating the functional heterogeneity of the striatal complex as well as the regional specificity of the graft-derived functional effects. Moreover, the results argue against the notion that DA grafts can function through a diffusion of transmitter over large distances since, despite the large size of the grafts, the functional graft effects were well localized to the reinnervated NAS and ventromedial striatal regions. We conclude, therefore, that graft-induced amelioration of postural and locomotor deficits are affected through different parts of the striatal complex, and that multiple graft placements are required to produce more complete recovery of motoric behaviour in the DA-depleted brain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...