Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2277
    Keywords: Preservation, kidney, numan ; Kidney, preservation, human ; UW solution, kidney ; Euro-Collins solution, kidney ; ATP, kidney, human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Differences in purine metabolism produced by three preservation solutions were studied by determining the adenine nucleotide (ATP, ADP, AMP, and IMP) and nucleoside (adenosine, inosine, and hypoxanthine) levels in human kidney cortical biopsies. Forty kidney allografts were studied using University of Wisconsin (UW) solution (n=20), Euro-Collins (EC) solution (n=12), and modified EC solution with mannitol (M;n=8). No significant differences were found between the three solutions studied with regard to ATP, ADP, or AMP changes. The mean ATP level (nmol/mg prot±SEM) at the end of preservation in the UW group was 2.7±0.3 nmol/mg, in the EC group 3.8±0.7 nmol/mg, and in the M group 2.3±0.4 nmol/mg. ATP 30 min after reperfusion in the UW, EC, and M groups was 5.7±0.8 nmol/mg, 6.4±1.0 nmol/mg, and 4.6±0.5 nmol/mg, respectively. However, an important difference appeared in the catabolic products determined. Kidneys perfused with UW solution had a significantly higher level of adenosine (2.6±0.6 nmol/mg), inosine (11.8±2.2 nmol/mg), and hypoxanthine (18.1±2.1 nmol/mg) at hypoxanthine of cold storage than those perfused with EC (0.4±0.1 nmol/mg, 2.0±0.8 nmol/mg, and 7.1±1.4 nmol/mg) and M solutions (0.2±0.05 nmol/mg, 0.5±0.1 nmol/mg, and 5.2±0.6 nmol/mg; P〈0.05). These levels returned to initial values 30 min postreperfusion and there were no differences with the EC or M solution groups at that time. Thus, the adenosine present in UW solution does not appear to be useful in recovering the adenine nucleotide pool at reperfusion. Moreover, it produces a marked increase in degradation products. Our findings do not support the beneficial metabolic effect of UW solution in terms of adenine nucleotide metabolism in comparison with simpler and less expensive preservation solutions like EC.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-157X
    Keywords: Fault Friction ; Aftershocks ; Fault Interaction ; Seismicity Pattern ; Ground Motions ; Source Parameters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The analysis of the Irpinia earthquake of 3 April 1996 (ML = 4.9), based on strong motion and short period local data, shows that it was a normal faulting event located within the epicentral area of the MS 6.9, 1980, earthquake. It was located at 40.67° N and 15.42° E at a depth of 8 km. The local magnitude (4.9) has been computed from the VBB stations of the MedNet network. The moment magnitude is Mw = 5.1 and the seismic moment estimated from the ground acceleration spectra is 5.0 1023 dyne cm. Spectral analysis of the strong motion recordings yields a Brune stress drop of 111 bars and a corner frequency of 1 Hz. The source radius associated to these values of seismic moment and stress drop is 1.3 km. The focal mechanism has two nodal planes having strike 297°, dip 74°, rake 290° and strike 64°, dip 25° and rake 220°, respectively. A fault plane solution with strike 295° ± 5°, dip 70° ± 5°, and rake 280° ± 10° is consistent with the S-wave polarization computed from the strong motion data recorded at Rionero in Vulture. We discuss the geometry and the dimensions of the fault which ruptured during the 1996 mainshock, its location and the aftershock distribution with respect to the rupture history of the 1980 Irpinia earthquake. The distribution of seismicity and the fault geometry of the 1996 earthquake suggest that the region between the two faults that ruptured during the first subevents of the 1980 event cannot be considered as a strong barrier (high strength zone), as it might be thought looking at the source model and at the sequence of historical earthquakes revealed by paleoseismological investigations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...