Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (3)
  • Picea engelmannii  (2)
  • Life and Medical Sciences  (1)
Source
  • Articles: DFG German National Licenses  (3)
Material
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 73 (1987), S. 82-90 
    ISSN: 1432-1939
    Keywords: Timberline ; Krummholz ; Microclimate ; Picea engelmannii ; Abies lasiocarpa ; Photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Microclimate and photosynthesis of krummholz mat growth forms of Picea engelmanii (Parry) and Abies lasiocarpa [Hook.] Nutt. were investigated to determine structural features which may aid survival in alpine environments. The structure of krummholz mats was described in terms of the vertical distribution of leaf area index and leaf area density, which exceeded 50 m-1 (based on total leaf surface area) near the canopy surface and approached zero below 30 cm from the surface in both species. Photosynthetic photon flux density (PPFD, 0.4–0.7 μm wavelengths) and wind decreased by an average of 6 and 50-fold, respectively, between 1 m above and 10 cm below mat surfaces in both species. Needle temperatures on a P. engelmannii krummholz mat during July averaged about 2°C above air temperature during the day, with a maximum overtemperature of greater than 20°C above T air during one sunlit period. At night, needle temperatures averaged 3–4°C below T air. Net photosynthesis in year-old P. engelmannii shoots reached a maximum at 15–20°C during July and August. Surface shoots were light saturated at near 1200 μmoles m-2s-1 PPFD, and had higher photosynthetic rates than subsurface, predominantly shaded shoots above 800 μmoles m-2s-1. Shade shoots had higher photosynthetic rates when PPFD was below 600 μmoles m-2s-1, and at 250 μmoles m-2s-1 shade shoots maintained about 50% of the net photosynthetic rate of sun shoots at light saturation. Shade shoots appeared capable of benefitting photosynthetically from elevated temperatures within krummholz mats despite relatively low light levels. Especially rapid photosynthesis may occur when canopy needles are illuminated by sunflecks and needle temperatures rise by 10° C or more. Snow cover appears crucial for the survival of needles during winter. Snow accumulated within krummholz needle canopies before the sub-canopy zone of unfoliated branches became filled. The concentrated needle growth in the krummholz canopy captured snow in early autumn without support from ground-level snowpack. Early snow cover in both species prevented cuticle abrasion and resulted in high winter needle water contents and viabilities for subsurface compared to surface needles which became abraded, severely dehydrated, and had high mortality between December and February, especially on windward sides of shoots. Extremely high concentrations of needles within krummholz mat canopies created an aerodynamic structure which elevated needle temperatures to more optimal photosynthetic levels in summer and resulted in more efficient snow accumulation in winter. These factors appear crucial for winter needle survival. Thus, krummholz mats appear to be an important adaptation in growth form which provides survival benefits in both summer and winter.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Soil temperature ; Photosynthesis ; Picea engelmannii ; Pinus contorta ; Roots ; Snow
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The influence of cold soil and snowcover on photosynthesis and conductance of Picea engelmannii and Pinus contorta was investigated early in the growing season in the Medicine Bow Mountains, Wyoming, USA. Trees of both species growing in cold soil (〈1°C) associated with snowpack had 25–40% lower leaf photosynthesis than trees in warm soils (〉10°C). In cold soils leaf conductance of both species was lower, but more so in Pinus, leading to lower intercellular CO2 concentrations and greater stomatal limitation of photosynthesis. Soil temperature had no effect on predawn and midday shoot water potentials of Pinus and Picea and lower photosynthesis and conductance did not appear to be a result of lower bulk shoot water potential. Predawn, as well as midday, water potentials of Pinus were consistently higher than Picea suggesting that Pinus may have deeper roots, although trenching experiments indicated young Picea trees have more extensive lateral root systems than similar sized Pinus trees. Young Picea trees (〈2 m in height) in snowbanks were capable of utilizing warmer soil 4 m from their base. Under similar conditions Pinus in snowbanks had lower photosynthesis and conductance than controls and Pinus did not appear capable of utilizing warmer soils nearby. Under full sunlight, PPFD reflected from the snow surface was 400–1400 μmol m-2 s-1 higher than from snow-free surfaces. This reflected light resulted in a 10%–20% increase in photosynthesis of Picea. The beneficial effect of reflected light was apparent whether or not photosynthesis was reduced by low soil temperatures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0002-9106
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The precise anatomical relation by which autonomic nerve endings contact gastric epithelial cells to enhance the rate of gastric secretions is not fully understood. The aim of the present study was to clarify this issue by using the technique of serial section reconstruction of areas of the gastric mucosa. The work also explored the possibility of a functional role for a system of smooth muscle strands in the gastric mucosa that emanate from the muscularis mucosa, run in the lamina propria, and are associated in a unique manner with the gastric glands. Electron microscopic serial sections of the gastric mucosa were performed to visualize the entire limiting membrane of gastric epithelial cells to determine any nerve associations (especially varicose endings) with these cells. Evaluation of serial sections of five separate parietal cells showed that their basal membrane did not come in close contact (nearest distance 500 nm) with any nerve axon or varicosity. Moreover, the axons passing in the area of these cells ultimately showed varicose endings associated with smooth muscle cells in the adjacent connective tissue (often separated by only 20 nm), with mast cells or with vascular elements. Additionally, the lateral membrane of these five parietal cells did not contact any endocrine cell in the epithelium, although other parietal cells in the area were adjacent to endocrine cells. Chief cells in the immediate area also did not form any close associations with nerve varicosities. Random analysis of 5,000 additional epithelial cells in these sections showed no close associations to nerve elements with significant accumulations of neurosecretory vesicles (varicosities). Because of the observed existence of innervation to the smooth muscle strands in the area of the gastric glands, serial 1-μm epoxy sections of the gastric mucosa were prepared, and profiles of smooth muscle and gastric glands were entered into a computer-assisted reconstruction system. Three-dimensional reconstruction techniques were employed to reveal the existence of a unique association between the mucosal smooth muscle strands and the gastric glands. The muscle strands arose from the muscularis mucosa at regular intervals and became branched to form an intricate wrap around a series of gastric glands that empty into one gastric pit. Branching of the muscle strands initially occurred at the point where they approached the base of the glands and then emanated into the connective tissue around the glands in a crossing pattern, ending at the base of the gastric pit. Although muscarinic agents have been shown to directly stimulate parietal cells to secrete acid, these findings have led us to postulate that autonomic nerve stimulation may also aid gastric secretion both by stimulation of mast cells and by glandular excretion mediated via mucosal muscular contractions.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...