Library

  • 1: advanced search Author, Corporation: Scherschlicht, R.   :    :   —  3 hits    Redo Search Permalink feed icon
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (1)
  • Photopolymerization  (1)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Polymers for Advanced Technologies 5 (1994), S. 56-62 
    ISSN: 1042-7147
    Keywords: Photoinitiator ; Photopolymerization ; Laser imaging ; Laser spectroscopy ; Photochemistry ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The design of an efficient photosenzitizer/photoinitiator combination is partly governed by a better understanding of the excited state processes involved. In the present paper, the photochemistry of a thiopyrylium salt (TP) as photosensitizer and of a tetraperester of benzophenone, tetra t-butyl peroxycarbonylbenzophenone (BTTB) as initiator, used in laser imaging applications has been investigated. The reactivity of the triplet states of both compounds BTTB and TP was studied by time-resolved laser absorption spectroscopy. The laser excitation of TP leads to a long-lived triplet state (lifetime 20-25 μsec) and a second species arising from the triplet state which cannot yet be characterized. Under laser excitation, BTTB gives a longlived transient arising from the cleavage of the peroxy bond. The short-lived triplet state cannot be observed on the nanosecond timescale. The triplet state lifetime has been evaluated from quenching experiments and found to be about 1 ns in acetonitrile. The deactivation of the TP triplet state by BTTP was considered, the deactivation constant was found to be equal to 6.6 × 107 m-1/sec in acetonitrile. The initiation mechanism is discussed.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...