Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (2)
  • Saccharomyces cerevisiae  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Antonie van Leeuwenhoek 73 (1998), S. 263-269 
    ISSN: 1572-9699
    Keywords: Saccharomyces cerevisiae ; karyotyping ; killer yeast ; fermentation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Saccharomyces cerevisiae T206 K+R+, a K2 killer yeast, was differentiated from other NCYC killer strains of S. cerevisiae on the basis of CHEF-karyotyping and mycoviral RNA separations. Genomic DNA of strain T206 was resolved into 13 chromosome bands, ranging from approximately 0.2 to 2.2 Mb. The resident virus in strain T206 yielded L and M RNA species of approximately 5.1 kb and 2.0 kb, respectively. In micro-scale vinifications, strain T206 showed a lethal effect on a K-R- mesophilic wine yeast. Metabolite accumulation and toxin activity were measured over a narrow pH range of 3.2 to 3.5. Contrary to known fermentation trends, the challenged fermentations were neither stuck nor protracted although over 70% of the cell population was killed. Toxin-sensitive cells showed cytosolic efflux.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-9699
    Keywords: electron microscopy ; killer effect ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A mesophilic wine yeast, Saccharomyces cerevisiae CSIR Y217 K − R − was subjected to the K2 killer effect of Saccharomyces cerevisiae T206 K + R + in a liquid grape medium. The lethal effect of the K2 mycoviral toxin was confirmed by methylene blue staining. Scanning electron microscopy of cells from challenge experiments revealed rippled cell surfaces, accompanied by cracks and pores, while those unaffected by the toxin, as in the control experiments, showed a smooth surface. Transmission electron microscopy revealed that the toxin damaged the cell wall structure and perturbed cytoplasmic membranes to a limited extent.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...