Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pediatric nephrology 7 (1993), S. 312-318 
    ISSN: 1432-198X
    Keywords: Phosphate deprivation ; Renal adaptation ; X-linkedHyp mice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The X-linkedHyp mutation, a murine homologue of X-linked hypophosphatemia in humans, is characterized by renal defects in phosphate reabsorption and vitamin D metabolism. In addition, the renal adaptive response to phosphate deprivation in mutantHyp mice differs from that of normal littermates. WhileHyp mice fed a low phosphate diet retain the capacity to exhibit a significant increase in renal brush-border membrane sodiumphosphate cotransport in vitro, the mutants fail to show an adaptive increase in maximal tubular reabsorption of phosphate per volume of glomerular filtrate (TmP/GFR) in vivo. Moreover, unlike their normal counterparts,Hyp mice respond to phosphate restriction with a fall in the serum concentration of 1,25-dihydroxyvitamin D [1,25(OH)2D] that can be ascribed to increased renal 1,25(OH)2D catabolism. The dissociation between the adaptive brush-border membrane phosphate transport response and the TmP/GFR and vitamin D responses observed inHyp mice is also apparent in X-linkedGy mice and hypophysectomized rats. Based on these findings and the notion that transport across the brush-border membrane reflects proximal tubular function, we suggest that the adaptive TmP/GFR response requires the participation of 1,25(OH)2D or a related metabolite and that a more distal segment of the nephron is the likely target for the 1,25(OH)2D-dependent increase in overall tubular phosphate conservation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...