Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (2)
  • cAMP  (2)
  • 1
    ISSN: 0886-1544
    Keywords: ABP-120 ; myosin ; actin polymerization ; amoeboid chemotaxis ; cAMP ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Triton-insoluble cytoskeletons were isolated from Dictyostelium discoideum AX3 cells prior to and following stimulation with 2′deoxy cyclic adenosine monophos-phate (cAMP). Temporal changes in the content of actin and a 120,000 dalton actin-binding protein (ABP-120) in cytoskeletons following stimulation were monitored. Both actin and ABP-120 were incorporated into the cytoskeleton at 30-40 seconds following stimulation, which is cotemporal with the onset of pseudopod extension during stimulation of amoebae with chemoattraciants. Changes in the content of total cytoskeletal protein and cytoskeletal myosin were determined under the same experimental conditions as controls. These proteins exhibited different kinetics from those of cytoskeletal ABP-120 and actin following the addition of 2′deoxy cAMP. The authors concluded that the association of ABP-120 with the cytoskeleton is regulated during cAMP signalling. Furthermore, these results indicate that ABP-120 is involved in cross-linking newly assembled actin filaments into the cytoskeleton during chemoattractant-stimulated pseudopod extension.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0192-253X
    Keywords: cAMP ; chemotaxis ; transformation ; CAT constructs ; gene regulation ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The genes coding for the cyclic nucleotide phosphodiesterase (PD) and the PD inhibitory glycoprotein (PDI) have been cloned and characterized. The PDI gene was isolated as a 1.6 kb genomic fragment, which included the coding sequence containing two small introns and 510 nucleotides of non-translated 5′ sequence. From the deduced amino acid sequence we predict a protein with a molecular weight (MW) of 26,000 that, in agreement with previous data, contains 15% cysteine residues. Genomic Southern blot analysis indicates that only one gene encodes the inhibitor. Northern blot analysis shows a single transcript of 0.95 kb. The PDI gene is expressed early in development with little transcript remaining following aggregation. The appearance of PDI mRNA is prevented by the presence of cAMP, but when cAMP is removed the transcript appears within 30 minutes. When cAMP is applied to cells expressing PDI the transcript disappears with a half-life of less than 30 minutes. The PD gene of D. discoideum is transcribed into three mRNAs: a 1.9 kb mRNA specific for growth, a 2.4 kb mRNA specific for aggregation, and a 2.2 kb mRNA specific for late development. The 2.2 kb mRNA is also specific for prestalk cells, and is induced by differentiation-inducing factor. All three mRNAs contain the same coding sequence, and differ only in their 5′ non-coding sequences. Each mRNA is transcribed from a different promoter, and by using the chloramphenicol acyltransferase gene as a reporter, we have shown that each promoter displays the same regulation as its cognate mRNA. Transformation of wild-type strains with the PD gene causes PD overexpression which accelerates aggregation and blocks subsequent cell differentiation and pattern formation.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...