Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (2)
  • chronic high glucose  (1)
  • glucose sensitivity  (1)
Source
  • Articles: DFG German National Licenses  (2)
Material
Years
  • 1
    ISSN: 1432-0428
    Keywords: Glucose transport ; glucose transporters ; insulin secretion ; pancreatic Beta cells ; chronic high glucose
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary We studied the effect of chronic exposure to high glucose on the glucose transport regulation in hamster pancreatic Beta cells in permanent culture (HIT). Cells were exposed to either 5.5 mmol/l or 16.7 mmol/l glucose for 48 h and then glucose transport was studied by measuring the (3H)-2-deoxyglucose uptake for 5 and 10 min at 37 °C. The 2- deoxyglucose uptake was lower in cells pre-exposed to glucose 16.7 mmol/l for 48 h compared to cells pre-exposed to glucose 5.5 (12.0±1.6 vs 19.1±1.2 nmol/0.1 mg after 5 min, and 22.2±2.6 vs 39.0±2.9 after 10 min respectively, mean ±SEM, n=5, p 〈 0.01). In order to investigate the mechanism(s) for glucose impairment of glucose transport, we studied the glucose carrier gene expression in the same cells by Northern and slot-blot analysis. When total RNA was extracted from HIT cells cultured at either 5.5 or 16.7 mmol/l glucose and then hybridized to 32P-labelled cDNA probes for the glucose transporter 1, the glucose transporter 2 and β-actin, a significant reduction of both glucose transporter 1 (−63.9±4.1%, mean±SEM, n=3) and glucose transporter 2 (−48.9±3.2%) mRNA was observed in HIT cells cultured with high glucose. In the same experiments no change of β-actin mRNA was observed, suggesting that the effect of high glucose was specific on the glucose-transporter mRNAs. In HIT cells cultured at glucose 16.7 mmol/l the glucose-induced insulin release was also reduced compared to cells cultured at glucose 5.5 (715±19 μU · h−1 · mg−1 vs 1301±28 μU · h−1 · mg−1, respectively, mean ±SEM, n=3, p 〈 0.05). In conclusion, in hamster pancreatic Beta-cells, chronic exposure to high glucose concentrations impairs glucose transporter mRNA levels, glucose transport, and glucose-induced insulin secretion in a co-ordinate manner.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: GLUT 1 ; GLUT 2 ; glucokinase ; glucose sensitivity ; insulin release ; HIT cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary HIT is a hamster-derived beta-cell line which in contrast to normal beta cells that only express the high Km GLUT-2 glucose transporter, also expresses the low Km glucose transporter GLUT 1. In HIT cells the abnormal glucose transport mechanism is associated with a marked shift to the left of the glucose-induced insulin release dose-response curve. We have used this cell model to investigate whether changes in glucose transport affect the glucose-induced insulin release. HIT cells were first incubated with a concentration of cytochalasin B (0.4 μmol/l) that selectively inhibits the GLUT-1 but not the GLUT-2 transporter. The consequences of blocking glucose phosphorylation and insulin release were studied. Exposure to 0.4 μmol/l cytochalasin B for 1 h caused a selective loss of the low Km transport: the calculated Vmax of GLUT 1 was reduced from 1726±98 to 184±14 pmol · mg protein−1 5 min−1 (mean±SEM, n=6, p〈0.005), while no major difference in the high Km (GLUT-2) transport was observed. In cytochalasin B exposed HIT cells the glucose phosphorylating activity (due to hexokinase and glucokinase) was unaffected. In these cells, however, the dose-response curve of glucose-induced insulin release was significantly shifted to the right: the 50% of maximal response (increment over baseline) was reached at an average glucose concentration of 2.9±0.2 mmol/l (vs 0.6±0.01 mmol/l in control HIT cells mean±SE, n=5, p〈0.05) and the maximal effect was reached at 11.0 mmol/l glucose (vs 2.8 mmol/l in control HIT cells p〈0.005). These results are consistent with the hypothesis that the affinity of the glucose transport system may contribute to determination of the glucose threshold concentration that triggers insulin secretion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...