Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (18)
  • windshear problems  (12)
  • gradient-restoration algorithms  (6)
  • feedback control  (4)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of optimization theory and applications 17 (1975), S. 361-430 
    ISSN: 1573-2878
    Keywords: Survey papers ; gradient methods ; numerical methods ; computing methods ; calculus of variations ; optimal control ; gradient-restoration algorithms ; boundary-value problems ; bounded control problems ; bounded state problems ; nondifferential constraints
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract This paper summarizes recent advances in the area of gradient algorithms for optimal control problems, with particular emphasis on the work performed by the staff of the Aero-Astronautics Group of Rice University. The following basic problem is considered: minimize a functionalI which depends on the statex(t), the controlu(t), and the parameter π. Here,I is a scalar,x ann-vector,u anm-vector, and π ap-vector. At the initial point, the state is prescribed. At the final point, the statex and the parameter π are required to satisfyq scalar relations. Along the interval of integration, the state, the control, and the parameter are required to satisfyn scalar differential equations. First, the sequential gradient-restoration algorithm and the combined gradient-restoration algorithm are presented. The descent properties of these algorithms are studied, and schemes to determine the optimum stepsize are discussed. Both of the above algorithms require the solution of a linear, two-point boundary-value problem at each iteration. Hence, a discussion of integration techniques is given. Next, a family of gradient-restoration algorithms is introduced. Not only does this family include the previous two algorithms as particular cases, but it allows one to generate several additional algorithms, namely, those with alternate restoration and optional restoration. Then, two modifications of the sequential gradient-restoration algorithm are presented in an effort to accelerate terminal convergence. In the first modification, the quadratic constraint imposed on the variations of the control is modified by the inclusion of a positive-definite weighting matrix (the matrix of the second derivatives of the Hamiltonian with respect to the control). The second modification is a conjugate-gradient extension of the sequential gradient-restoration algorithm. Next, the addition of a nondifferential constraint, to be satisfied everywhere along the interval of integration, is considered. In theory, this seems to be only a minor modification of the basic problem. In practice, the change is considerable in that it enlarges dramatically the number and variety of problems of optimal control which can be treated by gradient-restoration algorithms. Indeed, by suitable transformations, almost every known problem of optimal control theory can be brought into this scheme. This statement applies, for instance, to the following situations: (i) problems with control equality constraints, (ii) problems with state equality constraints, (iii) problems with equality constraints on the time rate of change of the state, (iv) problems with control inequality constraints, (v) problems with state inequality constraints, and (vi) problems with inequality constraints on the time rate of change of the state. Finally, the simultaneous presence of nondifferential constraints and multiple subarcs is considered. The possibility that the analytical form of the functions under consideration might change from one subarc to another is taken into account. The resulting formulation is particularly relevant to those problems of optimal control involving bounds on the control or the state or the time derivative of the state. For these problems, one might be unwilling to accept the simplistic view of a continuous extremal arc. Indeed, one might want to take the more realistic view of an extremal arc composed of several subarcs, some internal to the boundary being considered and some lying on the boundary. The paper ends with a section dealing with transformation techniques. This section illustrates several analytical devices by means of which a great number of problems of optimal control can be reduced to one of the formulations presented here. In particular, the following topics are treated: (i) time normalization, (ii) free initial state, (iii) bounded control, and (iv) bounded state.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of optimization theory and applications 26 (1978), S. 395-425 
    ISSN: 1573-2878
    Keywords: Optimal control ; numerical methods ; computing methods ; gradient methods ; gradient-restoration algorithms ; sequential gradient-restoration algorithms ; general boundary conditions ; nondifferential constraints ; bounded control ; bounded state
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract This paper considers the numerical solution of two classes of optimal control problems, called Problem P1 and Problem P2 for easy identification. Problem P1 involves a functionalI subject to differential constraints and general boundary conditions. It consists of finding the statex(t), the controlu(t), and the parameter π so that the functionalI is minimized, while the constraints and the boundary conditions are satisfied to a predetermined accuracy. Problem P2 extends Problem P1 to include nondifferential constraints to be satisfied everywhere along the interval of integration. Algorithms are developed for both Problem P1 and Problem P2. The approach taken is a sequence of two-phase cycles, composed of a gradient phase and a restoration phase. The gradient phase involves one iteration and is designed to decrease the value of the functional, while the constraints are satisfied to first order. The restoration phase involves one or more iterations and is designed to force constraint satisfaction to a predetermined accuracy, while the norm squared of the variations of the control, the parameter, and the missing components of the initial state is minimized. The principal property of both algorithms is that they produce a sequence of feasible suboptimal solutions: the functions obtained at the end of each cycle satisfy the constraints to a predetermined accuracy. Therefore, the values of the functionalI corresponding to any two elements of the sequence are comparable. The stepsize of the gradient phase is determined by a one-dimensional search on the augmented functionalJ, while the stepsize of the restoration phase is obtained by a one-dimensional search on the constraint errorP. The gradient stepsize and the restoration stepsize are chosen so that the restoration phase preserves the descent property of the gradient phase. Therefore, the value of the functionalI at the end of any complete gradient-restoration cycle is smaller than the value of the same functional at the beginning of that cycle. The algorithms presented here differ from those of Refs. 1 and 2, in that it is not required that the state vector be given at the initial point. Instead, the initial conditions can be absolutely general. In analogy with Refs. 1 and 2, the present algorithms are capable of handling general final conditions; therefore, they are suited for the solution of optimal control problems with general boundary conditions. Their importance lies in the fact that many optimal control problems involve initial conditions of the type considered here. Six numerical examples are presented in order to illustrate the performance of the algorithms associated with Problem P1 and Problem P2. The numerical results show the feasibility as well as the convergence characteristics of these algorithms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of optimization theory and applications 32 (1980), S. 577-593 
    ISSN: 1573-2878
    Keywords: Numerical methods ; computing methods ; optimal control ; optimality properties ; supplementary optimality properties ; gradient methods ; gradient-restoration algorithms ; sequential gradient-restoration algorithms ; general boundary conditions ; nondifferential constraints
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract In this paper, sequential gradient-restoration algorithms for optimal control problems are considered, and attention is focused on the gradient phase. It is shown that the Lagrange multipliers associated with the gradient phase not only solve the auxiliary minimization problem of the gradient phase, but are also endowed with a supplementary optimality property: they minimize the error in the optimality conditions, subject to the multiplier differential equations and boundary conditions, for given state, control, and parameter.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of optimization theory and applications 57 (1988), S. 1-40 
    ISSN: 1573-2878
    Keywords: Flight mechanics ; landing ; abort landing ; penetration landing ; optimal trajectories ; optimal control ; windshear problems ; sequential gradient-restoration algorithm ; primal sequential gradient-restoration algorithm
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract This paper is concerned with optimal flight trajectories in the presence of windshear. The penetration landing problem is considered with reference to flight in a vertical plane, governed by either one control (the angle of attack, if the power setting is predetermined) or two controls (the angle of attack and the power setting). Inequality constraints are imposed on the angle of attack, the power setting, and their time derivatives. The performance index being minimized measures the deviation of the flight trajectory from a nominal trajectory. In turn, the nominal trajectory includes two parts: the approach part, in which the slope is constant; and the flare part, in which the slope is a linear function of the horizontal distance. In the optimization process, the time is free; the absolute path inclination at touchdown is specified; the touchdown velocity is subject to upper and lower bounds; and the touchdown distance is subject to upper and lower bounds. Three power setting schemes are investigated: (S1) maximum power setting; (S2) constant power setting; and (S3) control power setting. In Scheme (S1), it is assumed that, immediately after the windshear onset, the power setting is increased at a constant time rate until maximum power setting is reached; afterward, the power setting is held constant; in this scheme, the only control is the angle of attack. In Scheme (S2), it is assumed that the power setting is held at a constant value, equal to the prewindshear value; in this scheme, the only control is the angle of attack. In Scheme (S3), the power setting is regarded as a control, just as the angle of attack. Under the above conditions, the optimal control problem is solved by means of the primal sequential gradient-restoration algorithm (PSGRA). Numerical results are obtained for several combinations of windshear intensities and initial altitudes. The main conclusions are given below with reference to strong-to-severe windshears. In Scheme (S1), the touchdown requirements can be satisfied for relatively low initial altitudes, while they cannot be satisfied for relatively high initial altitudes; the major inconvenient is excess of velocity at touchdown. In Scheme (S2), the touchdown requirements cannot be satisfied, regardless of the initial altitude; the major inconvenient is defect of horizontal distance at touchdown. In Scheme (S3), the touchdown requirements can be satisfied, and the optimal trajectories exhibit the following characteristics: (i) the angle of attack has an initial decrease, which is followed by a gradual, sustained increase; the largest value of the angle of attack is attained near the end of the shear; in the aftershear region, the angle of attack decreases gradually; (ii) initially, the power setting increases rapidly until maximum power setting is reached; then, maximum power setting is maintained in the shear region; in the aftershear region, the power setting decreases gradually; (iii) the relative velocity decreases in the shear region and increases in the aftershear region; the point of minimum velocity occurs at the end of the shear; and (iv) depending on the windshear intensity and the initial altitude, the deviations of the flight trajectory from the nominal trajectory can be considerable in the shear region; however, these deviations become small in the aftershear region, and the optimal flight trajectory recovers the nominal trajectory. A comparison is shown between the optimal trajectories of Scheme (S3) and the trajectories arising from alternative guidance schemes, such as fixed controls (fixed angle of attack, coupled with fixed power setting) and autoland (angle of attack controlled via path inclination signals, coupled with power setting controlled via velocity signals). The superiority of the optimal trajectories of Scheme (S3) is shown in terms of the ability to meet the path inclination, velocity, and distance requirements at touchdown. Therefore, it is felt that guidance schemes based on the properties of the optimal trajectories of Scheme (S3) should prove to be superior to alternative guidance schemes, such as the fixed control guidance scheme and the autoland guidance scheme.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of optimization theory and applications 75 (1992), S. 1-32 
    ISSN: 1573-2878
    Keywords: Flight mechanics ; windshear problems ; wind identification ; identification problems ; least-square problems ; accelerometer biases ; aircraft accidents ; Flight Delta 191
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract This paper deals with the identification of the wind profile along a flight trajectory by means of a three-dimensional kinematic approach. The approach is then applied to a recent aircraft accident, that of Flight Delta 191, which took place at Dallas-Fort Worth International Airport on August 2, 1985. In the 3D-kinematic approach, the wind velocity components are computed as the difference between the inertial velocity components and the airspeed components. The airspeed profile is obtained from flight measurements. The inertial velocity profile is obtained by integration of the measured inertial acceleration. The accelerometer biases and the impact values of the inertial velocity components are determined by matching the computed flight trajectory with the measured flight trajectory, available from the digital flight data recorder (DFDR) and air traffic control radar (ATCR). This leads to a least-square problem, which is solved analytically. Key to the precision of the identified wind profile is the correct identification of the accelerometer biases and the impact velocity components. In turn, this depends on the proper selection of the integration time. Because the measured data are noise-corrupted, unstable identification occurs if the integration time is too short. On the other hand, stable identification takes place if the integration time is properly chosen. Application of the method developed to the case of Flight Delta 191 shows that the identification problem has a stable solution if the integration time is larger than 180 sec. Numerical computation shows that, for Flight Delta 191, the maximum wind velocity difference determined with the 3D-kinematic approach was ΔW x =124 fps in the longitudinal direction, ΔW y =66 fps in the lateral direction, and ΔW h =71 fps in the vertical direction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of optimization theory and applications 76 (1993), S. 33-55 
    ISSN: 1573-2878
    Keywords: Flight mechanics ; windshear problems ; wind identification ; identification problems ; least-square problems ; accelerometer biases ; aircraft accidents ; Flight Delta 191
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract This paper deals with the identification of the wind profile along a flight trajectory by means of a two-dimensional kinematic approach. In this approach, the wind velocity components are computed as the difference between the inertial velocity components and the airspeed components. The airspeed profile is obtained from flight measurements. The inertial velocity profile is obtained by integration of the measured inertial acceleration. The accelerometer biases and the impact values of the inertial velocity components are determined by matching the computed flight trajectory with the measured flight trajectory, available from the digital flight data recorder and air traffic control radar. This leads to a least-square problem, which is solved analytically for both the continuous formulation and the discrete formulation. Key to the precision of the identification process is the proper selection of the integration time. Because the measured data are noise-corrupted, unstable identification occurs if the integration time is too short. On the other hand, if the integration time is too long, the hypothesis of two-dimensional motion (flight trajectory nearly contained in a vertical plane) breaks down. Application of the 2D-kinematic approach to the case of Flight Delta 191 shows that stable identification takes place for integration times in the range τ = 120 to 180 sec before impact. The results of the 2D-kinematic approach are close to those of the 3D-kinematic approach (Ref. 1), particularly in terms of the inertial velocity components at impact (within 1 fps) and the maximum wind velocity differences (within 2 fps). The 2D-kinematic approach is applicable to the analysis of wind-shear accidents in take-off or landing, especially for the case of older-generation, shorter-range aircraft which do not carry the extensive instrumentation of newer-generation, longer-range aircraft.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of optimization theory and applications 77 (1993), S. 1-29 
    ISSN: 1573-2878
    Keywords: Flight mechanics ; windshear problems ; wind identification ; identification problems ; least-square problems ; aircraft accidents ; Flight Delta 191
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract This paper deals with the identification of the wind profile along a flight trajectory by means of a two-dimensional dynamic approach. In this approach, the wind velocity components are computed as the difference between the inertial velocity components and the airspeed components. The airspeed profile as well as the nominal thrust, drag, and lift profiles are obtained from the available DFDR measurements. The actual values of the thrust, drag, and lift are assumed to be proportional to the respective nominal values via multiplicative parameters, called the thrust, drag, and lift factors. The thrust, drag, and lift factors plus the inertial velocity components at impact are determined by matching the flight trajectory computed from DFDR data with the flight trajectory available from ATCR data. This leads to a least-square problem which is solved analytically under the additional requirement of closeness of the multiplicative factors to unity. Application of the 2D-dynamic approach to the case of Flight Delta 191 shows that, with reference to the last 180 sec before impact, the values of the multiplicative factors were 1.09, 0.84, and 0.89; this implies that the actual values of the thrust, drag, and lift were 9% above, 16% below, and 11% below their respective nominal values. For the last 60 sec before impact, the aircraft was subject to severe windshear, characterized by a horizontal wind velocity difference of 123 fps and a vertical wind velocity difference of 80 fps. The 2D-dynamic approach is applicable to the analysis of windshear accidents in take-off or landing, especially for the case of older-generation, shorter-range aircraft which do not carry the extensive instrumentation of newer-generation, longer-range aircraft. The same methodology can be extended to the investigation of aircraft accidents originating from causes other than windshear (e.g., icing, incorrect flap position, engine malfunction), above all if its precision is further increased by combining the 2D-dynamic approach and the 2D-kinematic approach.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Journal of optimization theory and applications 84 (1995), S. 5-37 
    ISSN: 1573-2878
    Keywords: Wind identification ; real-time wind identification ; wind detection ; detection systems ; windshear problems ; take-off ; abort landing ; penetration landing ; optimal trajectories ; guidance trajectories
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract Standard wind identification techniques employed in the analysis of aircraft accidents are post-facto techniques; they are processed after the event has taken place and are based on the complete time histories of the DFDR/ATCR data along the entire trajectory. By contrast, real-time wind identification techniques are processed while the event is taking place; they are based solely on the knowledge of the preceding time histories of the DFDR/ATCR data. In this paper, a real-time wind identification technique is developed. First, a 3D-kinematic approach is employed in connection with the DFDR/ATCR data covering the time interval τ preceding the present time instant. The aircraft position, inertial velocity, and accelerometer bias are determined by matching the flight trajectory computed from the DFDR data with the flight trajectory available from the ATCR data. This leads to a least-square problem, which is solved analytically every β seconds, with β/τ small. With the inertial velocity and accelerometer bias known, an extrapolation process takes place so as to predict the inertial velocity profile over the subsequent β-subinterval. At the end of this subinterval, the extrapolated inertial velocity and the newly identified inertial velocity are statistically reconciled and smoothed. Then, the process of identification, extrapolation, reconciliation, and smoothing is repeated. Subsequently, the wind is computed as the difference between the inertial velocity and the airspeed, which is available from the DFDR data. With the wind identified, windshear detection can take place (Ref. 1). As an example, the real-time wind identification technique is applied to Flight Delta 191, which crashed at Dallas-Fort Worth International Airport on August 2, 1985. The numerical results show that the wind obtained via real-time identification is qualitatively and quantitatively close to the wind obtained via standard identification. This being the case, it is felt that real-time wind identification can be useful in windhsear detection and guidance, above all if the shear/downdraft factor signal is replaced by the wind difference signal (Ref. 1).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of optimization theory and applications 84 (1995), S. 39-63 
    ISSN: 1573-2878
    Keywords: Wind identification ; real-time wind identification ; wind-shear detection ; windshear detection systems ; windshear problems ; shear/downdraft factor ; average shear/downdraft factor ; wind difference index ; take-off ; abort landing ; penetration landing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract This paper is concerned with windshear detection in connection with real-time wind identification (Ref. 1). It presents a comparative evaluation of two techniques, one based on the shear/downdraft factor and one based on the wind difference index. The comparison is done with reference to a particular microburst, that which caused the 1985 crash of Flight Delta 191 at Dallas-Fort Worth International Airport. The shear/downdraft factor has the merit of combining the effects of the shear and the downdraft into a single entity. However, its effectiveness is hampered by the fact that, in a real situation, the windshear is accompanied by free-stream turbulence, which tends to blur the resulting signal. In turn, this results in undesirable nuisance warnings if the magnitude of the shear factor due to free-stream turbulence is temporarily larger than that due to true windshear. Therefore, proper filtering is necessary prior to using the shear/downdraft factor in detection and guidance. One effective way for achieving this goal is to average the shear/downdraft factor over a specified time interval τ. The effect of τ on the average shear/downdraft factor is studied. Another effective way of offsetting the effects due to free-stream turbulence is to employ the wind difference index for detection and guidance. The wind difference index is computed over a specified time interval τ along the trajectory of the aircraft and is more stable than the shear/downdraft factor signal with respect to interference effects due to free-stream turbulence. Yet, the wind difference index can be determined using the same aerodynamics and inertial instrumentation necessary for determining the shear/downdraft factor. The effect of τ over the wind difference index is studied; it is found that, for τ relatively large, the wind difference index tends to a stable value, while the average shear/downdraft factor tends to vanish. It must be noted that any unfavorable shear (inner core of a downburst) is both preceded and followed by a favorable shear. The total wind velocity difference associated with the regions of favorable shear is exactly the same as that associated with the region of unfavorable shear. On the other hand, the shear/downdraft factor averaged over the regions of favorable shear is much smaller than that averaged over the region of unfavorable shear. As a consequence, the wind difference index is more useful than the average shear/downdraft factor in detecting a potentially dangerous windshear situation while the aircraft is still flying in the region of favorable shear.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Journal of optimization theory and applications 38 (1982), S. 111-135 
    ISSN: 1573-2878
    Keywords: Minimax problems ; minimax function ; minimax function depending on the state ; minimax function depending on the control ; optimal control ; minimax optimal control ; numerical methods ; computing methods ; transformation techniques ; gradient-restoration algorithms ; sequential gradient-restoration algorithms
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract In a previous paper (Part 1), we presented general transformation techniques useful to convert minimax problems of optimal control into the Mayer-Bolza problem of the calculus of variations [Problem (P)]. We considered two types of minimax problems: minimax problems of Type (Q), in which the minimax function depends on the state and does not depend on the control; and minimax problems of Type (R), in which the minimax function depends on both the state and the control. Both Problem (Q) and Problem (R) can be reduced to Problem (P). In this paper, the transformation techniques presented in Part 1 are employed in conjunction with the sequential gradient-restoration algorithm for solving optimal control problems on a digital computer. Both the single-subarc approach and the multiple-subarc approach are employed. Three test problems characterized by known analytical solutions are solved numerically. It is found that the combination of transformation techniques and sequential gradient-restoration algorithm yields numerical solutions which are quite close to the analytical solutions from the point of view of the minimax performance index. The relative differences between the numerical values and the analytical values of the minimax performance index are of order 10−3 if the single-subarc approach is employed. These relative differences are of order 10−4 or better if the multiple-subarc approach is employed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...