Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (2)
Source
  • Articles: DFG German National Licenses  (2)
Material
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of engineering physics and thermophysics 29 (1975), S. 1512-1514 
    ISSN: 1573-871X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Theoretical and experimental confirmation is obtained for a relation between the stress in loose material beds forced through a vertical pipeline and the gas flow filtration velocity in such beds.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 34 (1992), S. 469-472 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: The variety of flow regimes (steady separated, periodically separated-‘Karman vortex street’, unsteady turbulent) and their characteristic peculiarities (separation and reattachment points, secondary separation, boundary layer, instability of the shear mixing layer, etc.) require the construction of effective numerical methods, which will be able to simulate adequately the considered flows.MERANGE ≡ SMIF-a splitting method for physical factors of incompressible fluids1-is used for calculations of the steady and unsteady fluid flows past a circular cylinder in a wide range of Reynolds numbers (10° 〈 Re 〈 lo6). The finite-difference scheme for this method is of second order accuracy in the space variables, has minimal numerical viscosity and is also monotonic. Use of the Navier-Stokes equations with the corresponding transformation of Cartesian co-ordinates allows the calculations to be made by one algorithm both in a boundary layer and out of it. The method allows calculations at Re = ∞ cc and simulation of d‘Alembert’s paradox. Some results on the classical problem of the flow around a circular cylinder for a wide range of Reynolds numbers are discussed. The crisis of the total drag coefficient and the sharp rise of the Strouhal number are simulated numerically (without any turbulence models) for the critical Reynolds numbers (Re ≈ 4 × 105), and are in a good agreement with experimental data.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...