Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (4)
  • 2018  (4)
Years
  • 2015-2019  (4)
Year
Language
  • 1
    Publication Date: 2022-03-11
    Description: We investigate the relation between Hall’s theorem and Kőnig’s theorem in graphs and hypergraphs. In particular, we characterize the graphs satisfying a deficiency version of Hall’s theorem, thereby showing that this class strictly contains all Kőnig–Egerváry graphs. Furthermore, we give a generalization of Hall’s theorem to normal hypergraphs.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-11
    Description: The perfect matching polytope, i.e. the convex hull of (incidence vectors of) perfect matchings of a graph is used in many combinatorial algorithms. Kotzig, Lovász and Plummer developed a decomposition theory for graphs with perfect matchings and their corresponding polytopes known as the tight cut decomposition which breaks down every graph into a number of indecomposable graphs, so called bricks. For many properties that are of interest on graphs with perfect matchings, including the description of the perfect matching polytope, it suffices to consider these bricks. A key result by Lovász on the tight cut decomposition is that the list of bricks obtained is the same independent of the choice of tight cuts made during the tight cut decomposition procedure. This implies that finding a tight cut decomposition is polynomial time equivalent to finding a single tight cut. We generalise the notions of a tight cut, a tight cut contraction and a tight cut decomposition to hypergraphs. By providing an example, we show that the outcome of the tight cut decomposition on general hypergraphs is no longer unique. However, we are able to prove that the uniqueness of the tight cut decomposition is preserved on a slight generalisation of uniform hypergraphs. Moreover, we show how the tight cut decomposition leads to a decomposition of the perfect matching polytope of uniformable hypergraphs and that the recognition problem for tight cuts in uniformable hypergraphs is polynomial time solvable.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-11
    Description: We describe a network simplex algorithm for the minimum cost flow problem on graph-based hypergraphs which are directed hypergraphs of a particular form occurring in railway rotation planning. The algorithm is based on work of Cambini, Gallo, and Scutellà who developed a hypergraphic generalization of the network simplex algorithm. Their main theoretical result is the characterization of basis matrices. We give a similar characterization for graph-based hypergraphs and show that some operations of the simplex algorithm can be done combinatorially by exploiting the underlying digraph structure.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-12
    Description: In this paper, we present a new, optimization-based method to exhibit cyclic behavior in non-reversible stochastic processes. While our method is general, it is strongly motivated by discrete simulations of ordinary differential equations representing non-reversible biological processes, in particular molecular simulations. Here, the discrete time steps of the simulation are often very small compared to the time scale of interest, i.e., of the whole process. In this setting, the detection of a global cyclic behavior of the process becomes difficult because transitions between individual states may appear almost reversible on the small time scale of the simulation. We address this difficulty using a mixed-integer programming model that allows us to compute a cycle of clusters with maximum net flow, i.e., large forward and small backward probability. For a synthetic genetic regulatory network consisting of a ring-oscillator with three genes, we show that this approach can detect the most productive overall cycle, outperforming classical spectral analysis methods. Our method applies to general non-equilibrium steady state systems such as catalytic reactions, for which the objective value computes the effectiveness of the catalyst.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...