Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (2)
  • 1980-1984  (2)
  • 1984  (2)
  • Life and Medical Sciences  (2)
  • aging
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 119 (1984), S. 341-348 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Spontaneous phenotypic revertants of hypoxanthine phosphoribosyl-transferase (HPRT) temperature-sensitive V79 Chinese hamster cells were selected by plating a temperature-sensitive mutant in HAT medium at 39°C. The incidence of such revertants was approximately 2 × 10-4 per cell. The majority of the revertants examined had increases of between three- and tenfold in their specific activity of the enzyme, and they were able to grow continuously in the presence of HAT medium at 39°C. When the revertants were cultivated in the absence of HAT, they recovered their HAT-sensitive phenotype and their lowered level of HPRT. Three of the revertants were examined for their temperature inactivation profiles, and all were found to have profiles identical to the ts parent, and quite different from the V79 wild type. The kinetic properties of the cell lines were studied:the Km for both PRPP and hypoxanthine was significantly different in the temperature-sensitive cells but was not significantly altered in the revertants with respect to the ts mutants. A specific antibody to Chinese hamster brain HPRT was employed in immunoprecipitation experiments. By measuring the point at which the immunoprecipitation of the antibody to HPRT was overcome by increasing concentrations of cell supernatant, it was possible to estimate the relative amount of enzyme molecules in the cell lines. From these data, it could be concluded that the revertants overproduced an enzyme with the same immunological properties as the ts line. Southern blots of the Hind Ill restricted DNA from the ts mutant and two revertant cell lines were examined with an HPRT cDNA probe. This established that the HPRT gene was amplified twofold in one of the revertants, and threefold in the other. However, if the revertants were reintroduced into nonselective medium, the gene copy number declined to one. Finally, northern blots of RNA extracted from the various cell lines demonstrated that the HPRT mRNA was augmented 1.5-fold in one revertant and 1.4-fold in the other. Reintroduction into non-selective medium resulted in a decline in mRNA level for the second mutant, whereas the first mutant appeared to be stabilized.We conclude that gene amplification and concomitant amplification of messenger RNA and enzyme levels are mechanisms of phenotypic reversion at the HPRT locus in Chinese hamster cells.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 5 (1984), S. 323-330 
    ISSN: 0197-8462
    Keywords: pulsed microwaves ; rat ; blood-brain barrier ; 86Rb permeability ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Microwaves (pulsed, 2,450 MHz) at an average power density of 3 W/cm2 were applied directly to the head for 5, 10, or 20 min, producing a peak specific absorption rate of 240 W/kg in the brain, which, after a 10-min exposure, resulted in brain temperatures in excess of 43°C. A bolus of 86Rb in isotonic saline was injected intravenously and an arterial sample was collected for 20 s to determine cardiac output. Compared with unexposed controls, uptake of 86Rb increased most in those regions directly in the path of the irradiation, namely, the occipital and parietal cortex, as well as the dorsal hippocampus, midbrain, and basal ganglia. In a separate group of animals, regional brain-vascular spaces were found to increase with brain temperature. These results support previous observations indicating that reliably demonstrable increases of blood-brain barrier permeability are associated with intense, microwave-induced hyperthermia, and that the observed changes are not due to field-specific interaction.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...