Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (5)
  • 1995-1999  (5)
  • 1997  (5)
  • 1
    ISSN: 1432-2013
    Keywords: Key words Confocal microscopy ; Acousto-optic tunable filter ; Fura-2 ; Ratio imaging ; HT29 cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  A confocal, ultraviolet laser scanning microscope (LSM) for reliable ratio measurements of localized intracellular Ca2+ gradients using the Ca2+-sensitive dye Fura-2 was developed. In a commercial LSM, the filter wheels for the excitation band-pass filters and the grey filters were replaced by acousto-optic tunable filters (AOTF) for rapid switching (≤1.5 μs) of the ultraviolet (351 and 364 nm) and the visible (457, 476, 488, 514 nm) excitation light. This enabled dual wavelength excitation of Fura-2, or 2’7’-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) for pH measurements. Changing to a transmitted-light detector of high sensitivity allowed for simultaneous recording of differential interference contrast images of the preparation with the excitation light. The AOTF fine control of the intensity of the excitation light and improvements in the emission detector sensitivity enabled the acquisition of up to 120 ratio pairs of high-quality images from a single cell. The optical capabilities and limitations of the instrument were evaluated with fluorescent beads and dye-loaded cultured cells. Agonist-induced intracellular Ca2+ transients in HT29 cells were recorded to test for the instrument’s ability to measure changes in [Ca2+]i. Ratio z-sections from Fura-2-loaded cells showed an inhomogeneity of the Fura-2 loading with an accumulation of the dye mostly in the mitochondria. We show, as an example of the microscope’s achievable resolution, the spatial and temporal heterogeneity of [Ca2+]i signals in mitochondria and the cytosol in response to agonist-evoked stimulation of HT29 cells. In addition, we show that the lipophilic, membrane-bound Fura-2 derivative Fura-C18, for measurements of near-membrane Ca2+ changes, can be used with this confocal microscope. This new LSM is expected to deepen our understanding of localized [Ca2+]i signals; for example, the nuclear Ca2+ signalling or the [Ca2+]i changes that occur during stimulation of ion secretion in polarized epithelial cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Key words BCECF ; Fura-2 ; pHi ; [Ca2+]i ; HT29 ; Carbachol ; Neurotensin ; ATP ; InsP3 ; Cell volume ; Calcein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  In this study we examined the influence of intracellular pH (pHi) on agonist-induced changes of intracellular Ca2+ activity ([Ca2+]i) in HT29 cells. pHi and [Ca2+]i were measured microspectrofluorimetrically using BCECF and fura-2, respectively. Buffers containing trimethylamine (TriMA), NH3/NH4 + and acetate were used to clamp pHi to defined values. The magnitudes of the peak and plateau of [Ca2+]i transients induced by carbachol (CCH, 10–6 mol/l) were greatly enhanced by an acidic pHi and nearly abolished by an alkaline pHi. The relationship between pHi and the [Ca2+]i peak was nearly linear from pHi 7.0 to 7.8. This effect of pHi was also observed at higher CCH concentrations (10–4 and 10–5 mol/l), at which the inhibitory effect of an alkaline pHi was more pronounced than the stimulatory effect of an acidic pHi. An acidic pHi shifted the CCH concentration/response curve to the left, whereas an alkaline pHi led to a rightward shift. The influence of pHi on [Ca2+]i transients induced by neurotensin (10–8 mol/l) or ATP (5 × 10–7 mol/l) was similar to its influence on those induced by CCH, but generally not as pronounced. Measurements of cellular inositol 1,4,5-trisphosphate (InsP 3) showed no changes in response to acidification with acetate (20 mmol/l) or alkalinization with TriMA (20 mmol/l). The InsP 3 increase induced by CCH was unaltered at an acidic pHi, but was augmented at an alkaline pHi. Confocal measurements of cell volume showed no significant changes induced by TriMA or acetate. Slow-whole-cell patch-clamp experiments showed no additional effect of CCH on the membrane voltage (V m) measured after TriMA or acetate application. We conclude that pHi is a physiological modulator of hormonal effects in HT29 cells, as the [Ca2+]i responses to agonists were significantly changed at already slightly altered pHi. The measurements of InsP 3, cell volume and V m show that pHi must act distally to the InsP 3 production, and not via changes of cell volume or V m.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2013
    Keywords: Key words wtCFTR ; Water channels ; Chloride channels ; Glibenclamide ; Xenopus oocytes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Multiple properties have been attributed to the cystic fibrosis transmembrane conductance regulator (CFTR), the gene product which is mutated in cystic fibrosis (CF). In this context it has been reported that CFTR transports water. In the present study we demonstrate that expression of wild-type CFTR (wtCFTR) in Xenopus oocytes and then stimulation by 3-isobutyl-1-methylxanthine (IBMX, 1 mmol/l) activates a Cl–conductance and, in parallel, a water conductance, as measured by a volume increase gravimetrically. In water-injected control oocytes or oocytes expressing a mutant form of CFTR (G551D-CFTR) IBMX had very little effect on Cl–conductance and no effect on water conductance. Phloretin (350 μmol/l) and p-chloromercuri-benzene sulphonate (pCMBS, 1 mmol/l) inhibited water transport but did not inhibit Cl–currents when measured in double-electrode voltage-clamp experiments. In contrast, glibenclamide (100 μmol/l) inhibited wtCFTR Cl–conductance but did not inhibit water conductance in IBMX-stimulated oocytes. Moreover, gravimetric and [14C]glycerol uptake measurements indicated enhanced glycerol uptake by wtCFTR-expressing oocytes after stimulation with IBMX. Enhanced glycerol uptake could be inhibited by phloretin and pCMBS but not by glibenclamide. Taken together, the data suggest that activation of wtCFTR by an increase of intracellular cAMP is paralleled by the activation of a gylcerol-permeable water conductance. Both water and Cl–conductive pathways can be inhibited differentially. Thus, water permeation through wtCFTR probably occurs at a site of CFTR which is spatially apart from the domain responsible for Cl–conductance, or CFTR might be a regulator of an endogenous water channel in oocytes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2013
    Keywords: Key words CFTR ; Ca2+ ; Chloride channels ; Ionomycin ; Xenopus oocytes ; CF
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Oocytes from Xenopus laevis activate a Ca2+ dependent Cl– conductance when exposed to the Ca2+ ionophore ionomycin. This Ca2+ activated Cl– conductance (CaCC) is strongly outwardly rectifying and has a halide conductivity ratio (GI– / GCl–) of about 4.4. This is in contrast to the cystic fibrosis transmembrane conductance regulator (CFTR)-Cl– conductance, which produces more linear I/V curves with a GI– / GCl– ratio of about 0.52. Ionomycin enhanced CaCC (ΔG) in water injected and CFTR expressing ooyctes in the absence of 3-isobutyl-1-methylxanthine (IBMX, 1 mmol/l) by (μS) 23 ± 1.9 (n=9) and 23.6 ± 2.3 (n=11). Stimulation by IBMX did not change CaCC in water injected oocytes. CaCC was inhibited in CFTR-expressing ooyctes after stimulation with IBMX or a membrane permeable form of cAMP and was only 5.1 ± 0.48 μS (n=18) and 6.9 ± 0.6 (n=3), respectively. Inhibition of CaCC was correlated to the amount of CFTR-current activated by IBMX. ΔF508-CFTR which demonstrates only a small residual function in activating a cAMP dependent Cl– channel in oocytes inhibited CaCC to a lesser degree (ΔG=12.1 ± 1.1 μS; n=7). Changes of CFTR and CaCC-Cl– whole cell conductances were also measured when extracellular Cl– was replaced by I–. The results confirmed the reduced activation of CaCC in the presence of activated CFTR. No evidence was found for inhibition of CFTR-currents by increase of intracellular Ca2+. Moreover, intracellular cAMP was not changed by ionomycin and stimulation by IBMX did not change the ionomycin induced Ca2+ increase in Xenopus oocytes. Taken together, these results suggest that activation of CFTR-Cl– currents is paralleled by an inhibition of Ca2+ activated Cl– currents in ooyctes of Xenopus laevis. These results provide another example for CFTR-dependent regulation of membrane conductances other than cAMP-dependent Cl– conductance. They might explain previous findings in epithelial tissues of CF-knockout mice.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2013
    Keywords: Key words Colon ; Fura-2 ; Rat colonic crypt ; ATP ; P2Y-receptor ; Purinoceptor ; Exocrine secretion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Under resting conditions the mammalian distal colon is a NaCl-absorptive epithelium. NaCl absorption occurs at surface cells in colonic crypts. Intracellular Ca2+ or cAMP are important second messengers that activate NaCl secretion, a function that is most pronounced in crypt bases. In the present study we examined the effect of extracellular ATP on isolated crypts of rat distal colon using the fura-2 technique. Intracellular Ca2+ ([Ca2+]i) was measured spectrofluorimetrically either by photon counting or video imaging. ATP reversibly increased [Ca2+]i in crypt base cells with an EC50 of 4.5 μmol/l (n = 11). This [Ca2+]i increase was composed of an initial peak, reflecting intracellular store release, and a secondary plateau phase reflecting transmembrane influx. Digital video imaging revealed that agonist-induced [Ca2+]i elevations were most marked at the crypt base. In the middle part of the crypt ATP induced smaller increases of [Ca2+]i (peak and plateau) as compared to basal cells and in surface cells this [Ca2+]i transient was even further reduced. Attempts to identify the relevant P2-receptor demonstrated the following rank order of potency: 2MeS-ATP 〉 ADP ≥ ATP 〉〉 AMP 〉 UTP 〉 AMP-PCP 〉 adenosine. In Ussing chamber experiments ATP (1 mmol/l) functioned as a secretagogue, increasing transepithelial voltage (V te) and equivalent short-circuit current (I sc): ΔI sc = –36.4 ± 5.4 μA/cm2, n = 17. Adenosine itself (1 mmol/l) induced an increase of I sc of similar magnitude to that induced by ATP: ΔI sc = –55.1 ± 8.4 μA/cm2, n = 9. The effect of adenosine, but not that of ATP, was fully inhibited by the A1/A2-receptor antagonist 8-(p-sulphophenyl)theophylline, 0.5 mmol/l, n = 4. Together these data indicate that: (1) basolateral ATP induces [Ca2+]i in isolated rat colonic crypts and acts as a secretagogue in the distal rat colon; (2) a basolateral P2Y-receptor is responsible for this ATP-induced NaCl secretion; (3) the ability of ATP to increase I sc in Ussing chamber experiments is not mediated via adenosine; and (4) the agonist-induced [Ca2+]i signals are mostly located in the crypt base, which is the secretory part of the colonic crypt.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...