Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (3)
  • 1995-1999  (3)
  • 1999  (3)
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 171 (1999), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Although glycogen and other α-1,4-d-glucan storage polysaccharides are present in many bacteria, only few glucan phosphorylases from bacteria have been identified and characterised on the protein or gene level. All bacterial phosphorylases follow the same catalytic mechanisms as their plant and vertebrate counterparts, but differ considerably in terms of their substrate specificity and regulation. The catalytic domains are highly conserved while the regulatory sites are only poorly conserved. The degree of conservation between bacterial and mammalian phosphorylases is comparable to that of other non-mammalian and mammalian α-glucan phosphorylases. Only for maltodextrin phosphorylase from E. coli the physiological role of the enzyme in the utilisation of maltodextrins is known in detail; that of all other phosphorylases remains still unclear. Roles in regulation of endogenous glycogen metabolism in periods of starvation, and sporulation, stress response or quick adaptation to changing environments are imaginable.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] Advanced glycation end products (AGEs) contribute to changes in protein conformation, loss of function, and irreversible crosslinking. Using a library of dipeptides on cellulose membranes (SPOT library), we have developed an approach to systematically assay the relative reactivities of amino acid ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1017
    Keywords: Key words Maltodextrinphosphorylase ; Hydrogen bonds ; Proton polarizability ; Fourier transform infrared spectroscopy ; Pyridoxalphosphate dissociation state
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract Maltodextrinphosphorylase (MDP) was studied in the pH range 5.4–8.4 by Fourier transform infrared (FT-IR) spectroscopy. The pK a value of the cofactor pyridoxalphosphate (PLP) was found between 6.5 and 7.0, which closely resembles the second pK a of free PLP. FT-IR difference spectra of the binary complex of MDP+α-d-glucose-1-methylenephosphonate (Glc-1-MeP) minus native MDP were taken at pH 6.9. Following binary complex formation, two Lys residues, tentatively assigned to the active site residues Lys533 and Lys539, became deprotonated, and PLP as well as a carboxyl group, most likely of Glu637, protonated. A system of hydrogen bonds which shows large proton polarizability due to collective proton tunneling was observed connecting Lys533, PLP, and Glc-1-MeP. A comparison with model systems shows, furthermore, that this hydrogen bonded chain is highly sensitive to local electrical fields and specific interactions, respectively. In the binary complex the proton limiting structure with by far the highest probability is the one in which Glc-1-MeP is singly protonated. In a second hydrogen bonded chain the proton of Lys539 is shifted to Glu637. In the binary complex the proton remains located at Glu637. In the ternary complex composed of phosphorylase, glucose-1-phosphate (Glc-1-P), and the nonreducing end of a polysaccharide chain (primer), a second proton may be shifted to the phosphate group of Glc-1-P. In the doubly protonated phosphate group the loss of mesomeric stabilization of the phosphate ester makes the C1–O1 bond of Glc-1-P susceptible to bond cleavage. The arising glucosyl carbonium ion will be a substrate for nucleophilic attack by the nonreducing terminal glucose residue of the polysaccharide chain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...